深度强化学习(DQN-Deep Q Network)之应用-Flappy Bird 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10811587.html 目录 1.达到的目的 2.思路 2.1.强化学习(RL Reinforcement Learing) 2.2.深度学习(卷积神经网络CNN) 3.踩过的坑 4.代码实现(python3.5) 5.运行结果与分析 1.达到的目的 游戏场景:障碍物以一定速度往…
声明:本文翻译自Vishal Maini在Medium平台上发布的<Machine Learning for Humans>的教程的<Part 5: Reinforcement Learning>的英文原文(原文链接).该翻译都是本人(tomqianmaple@outlook.com)本着分享知识的目的自愿进行的,欢迎大家交流! 关键词:探索和利用.马尔科夫决策过程.Q-Learning.策略学习.深度增强学习. [Update 9/2/17] 现在本系列教程已经出了电子书了,可以…
转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题.子曰:温故而知新,在进一步深入研究和应用DRL前,阶段性的整理下相关知识点.本文集中在DRL的model-free方法的Value-based和Policy-base方法,详细介绍下RL的基本概念和Value-based DQN,Policy-based DDPG两个主要算法,对目前state-of-art的算法(A3C)详细介绍,其他…
原文地址:https://blog.csdn.net/qq_30615903/article/details/80744083 DQN(Deep Q-Learning)是将深度学习deeplearning与强化学习reinforcementlearning相结合,实现了从感知到动作的端到端的革命性算法.使用DQN玩游戏的话简直6的飞起,其中fladdy bird这个游戏就已经被DQN玩坏了.当我们的Q-table他过于庞大无法建立的话,使用DQN是一种很好的选择 1.算法思想 DQN与Qlean…
本文作者:hhh5460 本文地址:https://www.cnblogs.com/hhh5460/p/10145797.html 0.说明 这里提供了二维迷宫问题的一个比较通用的模板,拿到后需要修改的地方非常少. 对于任意的二维迷宫的 class Agent,只需修改三个地方:MAZE_R, MAZE_R, rewards,其他的不要动!如下所示: class Agent(object): '''个体类''' MAZE_R = 6 # 迷宫行数 MAZE_C = 6 # 迷宫列数 def __…
随着AlphaGo和AlphaZero的出现,强化学习相关算法在这几年引起了学术界和工业界的重视.最近也翻了很多强化学习的资料,有时间了还是得自己动脑筋整理一下. 强化学习定义 先借用维基百科上对强化学习的标准定义: 强化学习(Reinforcement Learning,简称RL)是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益. 从本质上看,强化学习是一个通用的问题解决框架,其核心思想是 Trial & Error. 强化学习可以用一个闭环示意图来表示: 强化学习四元素…
在之前的强化学习文章里,我们讲到了经典的MDP模型来描述强化学习,其解法包括value iteration和policy iteration,这类经典解法基于已知的转移概率矩阵P,而在实际应用中,我们很难具体知道转移概率P.伴随着这类问题的产生,Q-Learning通过迭代来更新Q表拟合实际的转移概率矩阵 P,实现了强化学习在大多数实际场景中的应用.但是,在很多情况下,诸多场景下的环境状态比较复杂,有着极大甚至无穷的状态空间,维护这一类问题的Q表使得计算代价变得很高,这时就有了通过Deep网络来…
本文转自:http://mp.weixin.qq.com/s/aAHbybdbs_GtY8OyU6h5WA 专题 | 深度强化学习综述:从AlphaGo背后的力量到学习资源分享(附论文) 原创 2017-01-28 Yuxi Li 机器之心 选自arXiv 作者:Yuxi Li 编译:Xavier Massa.侯韵楚.吴攀   摘要 本论文将概述最近在深度强化学习(Deep Reinforcement Learning)方面喜人的进展.本文将从深度学习及强化学习的背景知识开始,包括了对实验平台的…
 原文地址: https://arxiv.org/pdf/1811.07871.pdf ======================================================== 如何让AI依照人类的意图行事?这是将AI应用于现实世界复杂问题的最大障碍之一. DeepMind将这个问题定义为“智能体对齐问题”,并提出了新的解决方案. 概述了解决agent alignment问题的研究方向.所提出的方法依赖于奖励建模的递归应用,以符合用户意图的方式解决复杂的现实世界问题. 强…
作者:牛阿链接:https://www.zhihu.com/question/26408259/answer/123230350来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 2017年06月05日更新,最近重写了一遍代码,Flappy Bird Q-learning.你可以在这里试着训练一下,加到最大帧数,在一两分钟内就可以达到10+的分数. 原答案: 最近看到了一个回答.答主用汇编语言写了一个flappy bird并在其之上加了一个Q-learning的算法让…