LOJ2538 PKUWC2018 Slay the Spire DP】的更多相关文章

传送门 不想放题面了,咕咕咕咕咕 这个期望明明是用来吓人的,其实要算的就是所有方案的最多伤害的和. 首先可以知道的是,能出强化牌就出强化牌(当然最后要留一张攻击牌出出去),且数字尽量大 所以说在强化牌数量$< K$时会打出所有强化牌和剩下的最大的攻击牌,而强化牌数量$\geq K$的时候则会打出$K-1$张强化牌和$1$张攻击牌,且它们的数字都是最大的 我们不妨计算每一种最优打出的方案存在在多少种抽取方案中. 设$f_{i,j}$表示使用$i$张强化牌,其中数值最小的牌是第$j$张时的方案的强化…
分析 学会新姿势!我们可以通过调整DP顺序来体现选取物品的优先顺序! 显然选取强化牌的最优策略是倍数从高到低,能选就选,最多选\(k-1\)张,选取攻击牌的最优策略是伤害从高到低,尽量少选,但最少选\(1\)张. 我们可以把强化牌从大到小排序,把攻击牌从小到大排序,令\(f[i][j]\)表示考虑了最大的\(i\)张强化牌,其中所有可选的强化牌有\(j\)张的情况的最优策略下的强化倍数和,\(g[i]\)表示考虑了最小的\(i\)张攻击牌,其中所有可选的攻击牌有\(j\)张的情况的最优策略下的伤…
LOJ BZOJ 洛谷 哪张能力牌能乘攻击啊,太nb了叭 显然如果有能力牌,那么应该选最大的尽可能的打出\(k-1\)张. 然后下面说的期望都是乘总方案数后的,即所有情况的和.然后\(w_i\)统一用\(A_i\)表示了. \(Solution1\) 所以考虑枚举最终抽到了几张能力牌.那么我们要算:\(F(n,m)\)表示抽到\(n\)张攻击牌,打出最大的\(m\)张的期望伤害:\(G(n,m)\)表示抽到\(n\)张能力牌,打出最大的\(m\)张的期望倍数. 考虑怎么算\(F(n,m)\).不…
题目链接 LOJ:https://loj.ac/problem/2538 Solution 计数好题. 首先可以发现这题和期望没关系. 其次对于手上的一套牌,设我们有\(a\)张强化牌,那么: 如果\(a\geqslant k-1\),那么我们显然是从大到小打出\(k-1\)张强化牌,最后打出一张最大的攻击牌. \(\rm otherwise\),我们打出所有的强化牌,再从大到小打出攻击牌. 那么就可以\(dp\)了. 对于强化牌,我们从大到小排序,设\(f[i][j]\)表示当前考虑了前\(i…
题面传送门 hot tea 啊--这种风格及难度的题放在省选 D2T1 左右还是挺喜闻乐见的罢 首先考虑对于固定的 \(m\) 张牌怎样求出最优的打牌策略,假设我们抽到了 \(p\) 张强化牌,攻击力从大到小分别为 \(x_1,x_2,\cdots,x_p\),以及 \(q\) 张攻击牌,攻击力从大到小分别为 \(y_1,y_2,\cdots,y_q\),显然如果 \(q=0\) 那就没得打了,总攻击力显然为 \(0\),否则你手玩几组数据就能发现我们肯定会尽量打强化牌直到没有强化牌或者只能再打…
我们不难发现,假设抽了x张攻击牌,y张强化牌,那么肯定是打出尽可能多张的强化牌后,再开始出攻击牌(当然最少要一张攻击牌) 我们设G(i,j)表示:所有(抽到的攻击牌牌数为i,打出的攻击牌牌数为j)的方案,所产生的攻击值的总和 形式化地说:​$G(i,j)=\sum\limits_{S∈攻击牌\and|S|=i}S中前j大的牌的攻击值之和$ 考虑到G(i,j)难以一次求出,我们考虑设置一些中间变量 设g[i][j]表示:我们对攻击牌从小大大进行排序,目前选了i张牌,其中最小的牌是第j张的总贡献,其…
Problem loj2538 Solution 在考场上当然要学会写暴力,考虑如果手上已经有了\(a\)张攻击牌和\(b\)张强化牌: 首先强化牌会在攻击牌之前用(废话),其次要将两种牌分别从大往小打,即排个序先(也是废话) 要尽量打强化牌,最后再打一张攻击牌(由于每张强化牌至少乘二,所以打一张强化牌一定不比多打一张攻击牌差) 由于\(n\leq 3000\),预估复杂度为\(O(n^2)\),所以应该可以枚举两种牌的数量 设两个状态,\(F[i][j]\)表示选取\(i\)张强化牌,打出\(…
Description 现在有 \(n\) 张强化牌和 \(n\) 张攻击牌: 攻击牌:打出后对对方造成等于牌上的数字的伤害. 强化牌:打出后,假设该强化牌上的数字为 \(x\),则其他剩下的攻击牌的数字都会乘上 \(x\).保证强化牌上的数字都大于 1. 现在等概率地从这 \(2n\) 张卡中抽出 \(m\) 张,并且按最优策略打出 \(k\) 张,问期望能造成多少伤害. Solution 第一这是披着期望皮的计数题 第二最优策略肯定是能打强化牌就打强化牌,最后剩下一张攻击牌再打 既然是计数题…
点此看题面 大致题意: 有\(n\)张强化牌\(a_i\)和\(n\)张攻击牌\(b_i\),每张牌有一个权值(强化牌的权值大于\(1\)),每张强化牌能使所有攻击牌的权值乘上这张强化牌的权值,每张攻击牌造成的伤害等于这张攻击牌的权值.现在,以等概率抽出\(m\)张牌,并以最优策略使用其中至多\(k\)张牌造成最大的伤害.求所有情况下,造成伤害总和. 前言 感觉最近肝了好久的文化课,居然思维水平不但没降,还有了点提升? 没想到居然能不看题解自己把这道题做出来,虽然\(WA\)了一次,但还算是有进…
Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spire 题解 首先我们考虑拿到一副牌如何打是最优的,不难发现是将强化牌从大到小能打就打,最后再从大到小打攻击牌 . 为什么呢 ? 证明(简单说明) : 如果不是这样 , 那么我们就是有强化牌没有用 , 且攻击牌超过两张 . 我们考虑把最小的那张攻击牌拿出来 , 然后放入一张强化牌 . \(\becau…