Luogu4195 【模板】exBSGS(exBSGS)】的更多相关文章

[模板]exBSGS/Spoj3105 Mod 题目描述 已知数\(a,p,b\),求满足\(a^x\equiv b \pmod p\)的最小自然数\(x\). 输入输出格式 输入格式: 每个测试文件中最多包含\(100\)组测试数据. 每组数据中,每行包含\(3\)个正整数\(a,p,b\). 当\(a=p=b=0\)时,表示测试数据读入完全. 输出格式: 对于每组数据,输出一行. 如果无解,输出No Solution(不含引号),否则输出最小自然数解. BSGS 若\(A \perp p\)…
如果a和p互质,用扩欧求逆元就可以直接套用普通BSGS.考虑怎么将其化至这种情况. 注意到当x>=logp时gcd(ax,p)是一个定值,因为这样的话每个存在于a中的质因子,其在ax中的出现次数一定比在p中的多. 于是对x<logp的情况暴力验证.对x>=logp的情况,设d=gcd(ax,p),剩下的问题变为求ax/d≡b/d(mod p/d),这里ax和p/d显然就是互质的了. 要求解这个方程,显然不能把d直接乘过去(好像也说不清为啥).首先b%d>0时无解.然后考虑从ax中分…
exBSGS 已知数\(a,p,b\),求满足\(a^x≡b\ (\bmod p)\)的最小自然数\(x\). \(100\%\)的数据,\(a,p,b≤10^9\). _皎月半洒花的题解 其实本质上,当\(p\)不为素数时,我们无法进行朴素 BSGS 的原因是我们的欧拉定理\(a^{\varphi(p)} \equiv b(\bmod p)\) 只能处理\((a,p)=1\)的情况.那么我们知道,朴素的 BSGS 的关键在于,可以保证最小解是有界的--\(x\)一定在\([1,\varphi(…
传送门 首先要懂得 $BSGS$,$BSGS$ 可以求出关于 $Y$ 的方程 $X^Y \equiv Z (mod\ mo)$ 的最小解,其中 $gcd(X,Z)=1$ $exBSGS$ 算是 $BSGS$ 的进一步扩展,使得当 $gcd(X,Z)!=1$ 时仍然适用 先把方程转换成 $X^Y+k*mo=Z$ 的形式 因为 $Y,k$ 都是整数,所以 $Z$ 必须是 $gcd(X,mo)$ 的倍数,不然无解 所以可以把方程左右同除 $gcd(X,mo)$,变成 $X^{(Y-1)}*\frac{…
https://www.cnblogs.com/sdzwyq/p/9900650.html 模板: unordered_map<int, int> mp; LL q_pow(LL n, LL k, LL p) { LL ans = 1; if(k == -1) return 0; while(k) { if(k&1) ans = (ans*n) % p; n = (n*n) % p; k >>= 1; } return ans; } int BSGS(int a, int…
BSGS和EXBSGS是OI中用于解决A^xΞB(mod C)的常用算法. 1.BSGS BSGS用于A,C互质的情况. 令m=sqrt(C),此时x可表示为i*m+j. 式中i和j都<=sqrt(C) 原式Ax≡B(mode C) -->Ai*m * Aj≡B(mode C) 枚举Ai*m,此时Ai*m相当于系数.//O(sqrt(C)) 现在我们可用exgcd/费马小定理求逆元算出Aj%C的值 通过预处理将A1~m存入map/哈希表.//O(1)//用map会多一个log 解决了. 时间复…
也许更好的阅读体验 \(Description\) 给定\(a,b,p\),求一个\(x\)使其满足\(a^x\equiv b\ \left(mod\ p\right)\) \(BSGS\) \(BSGS\)可以解决\(p\)为质数的情况 令 \(m=\lceil \sqrt p\rceil\) 令 \(x=i\cdot m-k\) 有 \(a^{i\cdot m-k} \equiv b\ (mod\ p)\) 两边同乘 \(a^k\) 得 \(a^{i\cdot m}\equiv b\cdot…
目录 定义 原理 朴素算法 数论分块 例题 Luogu2485 [SDOI2011]计算器 题解 代码 扩展 例题 Luogu4195 [模板]exBSGS/Spoj3105 Mod 代码 之前写了一篇关于BSGS的学习笔记.因为太过老旧,就想修改一些错误,顺便添上扩展BSGS的部分.可惜博客园不能对已发布的随笔修改编辑器,索性重新发出来.旧文已删. 定义 Baby-Step-Giant-Step算法,简称BSGS算法,又称大步小步算法,用于求方程\(a^x\equiv b(\text{mod…
数论ex 数学学得太差了补补知识点or复习 Miller-Rabin 和 Pollard Rho Miller-Rabin 前置知识: 费马小定理 \[ a^{p-1}\equiv 1\pmod p,p \ is \ prime \] 二次探测(mod奇素数下1的二次剩余) \[ x^2\equiv 1\pmod p\Rightarrow x=1 \ or \ p-1 \] 如果不是 \(\bmod\) 奇素数,二次剩余可能是更多的值 如果把费马小定理反过来用来检测一个数是否是素数,虽然是错的,…
bsgs算法: 我们在逆元里曾经讲到过如何用殴几里得求一个同余方程的整数解.而\(bsgs\)就是用来求一个指数同余方程的最小整数解的:也就是对于\(a^x\equiv b \mod p\) 我们可以用\(bsgs\)在\(O(\sqrt n)\) 的复杂度内求出关于\(x\)的最小正整数解.(前提是\(p\)为质数) \(a^x\equiv b \mod p\) 我们可以知道如果我们的模数p是一个质数,我们将同余式的右边以逆元的形式乘到左边来,根据殴拉定理(因为p是质数,所以a,p互质)则我们…