[转]kaldi中的特征提取】的更多相关文章

转:http://blog.csdn.net/wbgxx333/article/details/25778483 本翻译原文http://kaldi.sourceforge.net/feat.html,由@煮八戒翻译,@wbglearn校对和修改. 特征提取 简介 我们做特征提取和波形读取的这部分代码,其目的是为了得到标准的MFCC(译注:梅尔倒谱系数)和PLP(译注:感知线性预测系数)特征,设置合理的默认值但留了一部分用户最有可能想调整的选项(如梅尔滤波器的个数,最小和最大截止频率等等).这部…
http://blog.csdn.net/u013677156/article/details/77893661 1.kaldi解码过程 kaldi识别解码一段语音的过程是:首先提取特征,然后过声学模型AM,然后过解码网络HCLG.fst,最后输出识别结果. HCLG是解码时的重要组成部分.HCLG.fst是由4个fst经过一系列算法(组合.确定化和最小化等)组合而成的.4个fst分别是H.fst.C.fst.L.fst和G.fst,分别是HMM模型.上下文环境.词典和语言模型对应的fst. …
转自:http://blog.csdn.net/chenhoujiangsir/article/details/51613144 说明:本文是kaldi主页相关内容的翻译(http://kaldi-asr.org/doc/tree_externals.html).目前网上已经有一个翻译的版本,但翻译的不是很清楚,导致我在刚学这部分内容的时候产生了一些误解,所以我希望结合我目前所知道的一些东西,尽量把这部分内容翻译地比较容易理解,但由于也是初学者,一些错误也是不可避免,希望大家发现后一起交流,以便…
titching模块中对特征提取的封装解析(以ORB特性为例)     OpenCV中Stitching模块(图像拼接模块)的拼接过程可以用PipeLine来进行描述,是一个比较复杂的过程.在这个过程中,特征提取是重要的一个部分.由于OpenCV发展到了3.X以后,Stitching模块的相关函数进行了重新封装,所以对于学习研究造成了一定困难.这里通过解析代码,研究Stitching模块中的特征提取部分,并且和直接进行特征提取的相关函数进行比对. 采用的图片为 parliament2.bmp 和…
在基于DNN-HMM的语音识别中,DNN的作用跟GMM是一样的,即它是取代GMM的,具体作用是算特征值对每个三音素状态的概率,算出来哪个最大这个特征值就对应哪个状态.只不过以前是用GMM算的,现在用DNN算了.这是典型的多分类问题,所以输出层用的激活函数是softmax,损失函数用的是cross entropy(交叉熵).不用均方差做损失函数的原因是在分类问题上它是非凸函数,不能保证全局最优解(只有凸函数才能保证全局最优解).Kaldi中也支持DNN-HMM,它还依赖于上下文(context d…
steps/nnet3/train_dnn.py --l2-regularize-factor 影响模型参数的l2正则化强度的因子.要进行l2正则化,主要方法是在配置文件中使用'l2-regularize'进行配置.l2正则化因子将乘以组件中的l2正则化值,并且可用于通过模型平均化以校正与并行化带来的影响. (float,默认值= 1) src/nnet3/nnet-utils.cc:2030 void ApplyL2Regularization(const Nnet &nnet, BaseFl…
Chain模型的训练流程 链式模型的训练过程是MMI的无网格的版本,从音素级解码图生成HMM,对其使用前向后向算法,获得分母状态后验,通过类似的方式计算分子状态后验,但限于对应于转录的序列. 对于神经网络的每个输出索引(即对于每个pdf-id),我们计算(分子占有概率 - 分母占用概率)的导数,并将它们在网络中反向传播. 分母FST 对于计算中的分母部分,我们对HMM进行前向-后向计算.实际上,由于我们把它表示为一个有限状态接受器,标签(pdf-id)与弧而不是状态相关联,所以在正常的公式中分母…
转自: http://blog.csdn.net/wbgxx333/article/details/24932533 本文是kaldi学习联盟中@冒顿翻译的,下面是@冒顿的翻译结果,在这里感谢@冒顿的辛勤劳动,希望更多的人加入到这个翻译上来,为更多的人学习…… 因为我们翻译的文档都有url,csdn不支持我们的直接发表,所以只能用图片,最后的翻译会集成pdf版,后面会公开的.最后,如果你发现有任何问题,欢迎留言讨论.我会在最快的时间回复大家,希望大家共同学习………
部分 V图像特征提取与描述 OpenCV-Python 中文教程(搬运)目录 29 理解图像特征 目标本节我会试着帮你理解什么是图像特征,为什么图像特征很重要,为什么角点很重要等.29.1 解释 我相信你们大多数人都玩过拼图游戏吧.首先你们拿到一张图片的一堆碎片,要做的就是把这些碎片以正确的方式排列起来从而重建这幅图像.问题是,你怎样做到的呢?如果把你做游戏的原理写成计算机程序,那计算机就也会玩拼图游戏了.如果计算机可以玩拼图,我们就可以给计算机一大堆自然图片,然后就可以让计算机把它拼成一张大图…
部分 V图像特征提取与描述 OpenCV-Python 中文教程(搬运)目录 34 角点检测的 FAST 算法 目标 • 理解 FAST 算法的基础 • 使用 OpenCV 中的 FAST 算法相关函数进行角点检测原理 我们前面学习了几个特征检测器,它们大多数效果都很好.但是从实时处理的角度来看,这些算法都不够快.一个最好例子就是 SLAM(同步定位与地图构建),移动机器人,它们的计算资源非常有限.为了解决这个问题,Edward_Rosten 和 Tom_Drummond 在 2006 年提出里…