The perception and large margin classifiers】的更多相关文章

假设样例按照到来的先后顺序依次定义为.为样本特征,为类别标签.任务是到来一个样例,给出其类别结果的预测值,之后我们会看到真实值,然后根据真实值来重新调整模型参数,整个过程是重复迭代的过程,直到所有的样例完成.这么看来,我们也可以将原来用于批量学习的样例拿来作为在线学习的样例.在在线学习中,我们主要关注在整个预测过程中预测错误的样例数. 用表示正例,表示负例,支持向量机中提到的感知算法(perception algorithm),我们的假设函数为: 其中,x是n维特征向量,是n+1维参数权重.函数…
小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文:  http://www.miaoerduo.com/deep-learning/基于caffe的large-margin-softmax-loss的实现(中).html 四.前馈 还记得上一篇博客,小喵给出的三个公式吗?不记得也没关系. 这次,我们要一点一点的通过代码来实现这些公式.小喵主要是GPU上实现前后馈的代码,因为这个层只…
小喵的唠叨话:在写完上一次的博客之后,已经过去了2个月的时间,小喵在此期间,做了大量的实验工作,最终在使用的DeepID2的方法之后,取得了很不错的结果.这次呢,主要讲述一个比较新的论文中的方法,L-Softmax,据说单model在LFW上能达到98.71%的等错误率.更重要的是,小喵觉得这个方法和DeepID2并不冲突,如果二者可以互补,或许单model达到99%+将不是梦想. 再次推销一下~ 小喵的博客网址是: http://www.miaoerduo.com 博客原文:  http://…
[INTERSPEECH 2019接收] 链接:https://arxiv.org/pdf/1904.03479.pdf 这篇文章在会议的speaker session中.本文主要讨论了说话人验证中的损失函数large margin softmax loss(结合了softmax和margins的losses). 本文从x-vector中提取speaker embedding. 这篇文章在一个公式中统一了多种margin项: 其中N表示训练样本数目,C表示训练集中的说话人数目,s是尺度因子.m1…
目录 概 主要内容 Wang H, Wang Y, Zhou Z, et al. CosFace: Large Margin Cosine Loss for Deep Face Recognition[C]. computer vision and pattern recognition, 2018: 5265-5274. @article{wang2018cosface:, title={CosFace: Large Margin Cosine Loss for Deep Face Recog…
Abstract We present a new learning architecture: the Decision Directed Acyclic Graph (DDAG), which is used to combine many two-class classifiers into a multiclass classifiers. For an…
这是我的支持向量机模型的代价函数,在左边这里我画出了关于…
Ranking SVM 简介 排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank简介).LTR有三种主要的方法:PointWise,PairWise,ListWise.Ranking SVM算法是PointWise方法的一种,由R. Herbrich等人在2000提出, T. Joachims介绍了一种基于用户Clickthrough数据使用Rank…
Support Vector Machine (large margin classifiers ) 1. cost function and hypothesis 下面那个紫色线就是SVM 的cost function       2. SVM 的数学解释                           3. SVM with kernel 我的理解是 kernel 的作用就是把低维度的 x 转化成高维的 f, 然后就好分类了   note: 上图就是一个2维(x1, x2)变3维(f1,…
排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank简介).LTR有三种主要的方法:PointWise,PairWise,ListWise.Ranking SVM算法是PointWise方法的一种,由R. Herbrich等人在2000提出, T. Joachims介绍了一种基于用户Clickthrough数据使用Ranking SVM来进行排序的方法…
Learning to rank with scikit-learn: the pairwise transform http://fa.bianp.net/blog/2012/learning-to-rank-with-scikit-learn-the-pairwise-transform/ tags: pythonscikit-learnranking This tutorial introduces the concept of pairwise preference used in mo…
原文连接 - https://zhuanlan.zhihu.com/p/31652569 摘要 支持向量机 (SVM) 是一个非常经典且高效的分类模型.但是,支持向量机中涉及许多复杂的数学推导,并需要比较强的凸优化基础,使得有些初学者虽下大量时间和精力研读,但仍一头雾水,最终对其望而却步.本文旨在从零构建支持向量机,涵盖从思想到形式化,再简化,最后实现的完整过程,并展现其完整思想脉络和所有公式推导细节.本文力图做到逻辑清晰而删繁就简,避免引入不必要的概念.记号等.此外,本文并不需要读者有凸优化的…
##Advice for Applying Machine Learning Applying machine learning in practice is not always straightforward. In this module, we share best practices for applying machine learning in practice, and discuss the best ways to evaluate performance of the le…
Learning to Rank之Ranking SVM 简介 排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank简介).LTR有三种主要的方法:PointWise,PairWise,ListWise.Ranking SVM算法是PointWise方法的一种,由R. Herbrich等人在2000提出, T. Joachims介绍了一种基于用户Cli…
之前分为两部分讨论过SVM.第一部分讨论了线性SVM,并且针对线性不可分的数据,把原始的问题转化为对偶的SVM求解.http://www.cnblogs.com/futurehau/p/6143178.html 然后考虑到特征数量特别特别多的时候,引入核函数的求解.http://www.cnblogs.com/futurehau/p/6149558.html 但是,之前也遗留了一个问题,就是比如高斯核函数或其他的核函数,虽然large margin能够在一定程度上防止过拟合,但是加入你的核函数太…
(写在前面:机器学习入行快2年了,多多少少用过一些算法,但由于敲公式太过浪费时间,所以一直搁置了开一个机器学习系列的博客.但是现在毕竟是电子化的时代,也不可能每时每刻都带着自己的记事本.如果可以掏出手机或iPad登陆网站就可以看到自己的一些笔记,才更有助于知识的巩固.借此机会,重新整理各大算法,希望自己能有更深的认识,如果有可能,也大言不惭的说希望能够帮助到需要帮助的朋友-) (本篇博客内容来自台大林轩田老师Coursera Machine Learning Technology视频及周志华老师…
standard large margin problem 分割线…
向量内积 uTv = vTu为两个二维向量的内积,它等于p*||u||(其中p为向量v在向量u上的投影长度,是有+/-之分的,||u||为向量u的长度也称为范数),它是一个实数(是一个标量). 如上图所示,当u与v之间的夹角小于90度时,p为正的:当u与v之间的夹角大于90度时,p为负的. SVM的目标优化函数(cost function)与约束条件 这儿将问题进行简化,令θ0=0(截距为0),n=2来分析下 SVM的目标优化函数(cost function)可以写成上图中的1/2倍的θ的范数(…
由于在读文献期间多次遇见KISSME,都引自这篇CVPR,所以详细学习一下. Introduction 度量学习在机器学习领域有很大作用,其中一类是马氏度量学习(Mahalanobis metric learning). 什么是马氏距离?参考该篇文章[传送门] KISS含义为:keep it simple and straightforward Learning a Mahalanobis Metric 对于两个数据点 xi.xj,基于马氏距离的相似度为: 如果两个数据属于同一类,记为 yij…
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinci 10:30  ARS-L1.1—GROUP STRUCTURED DIRTY DICTIONARY LEARNING FOR CLASSIFICATION Yuanming Suo, Minh Dao, Trac Tran, Johns Hopkins University, USA; Hojj…
这里翻译下<Deep face recognition: a survey v4>. 1 引言 由于它的非侵入性和自然特征,人脸识别已经成为身份识别中重要的生物认证技术,也已经应用到许多领域,如军事,进入,公共安全和日常生活.FR自然在CVPR会议中也占据了十分长的时间.早在1990年代,随着特征脸的提出[157],FR就成为了一个比较热门的研究领域.过去基于特征进行FR的里程碑方法在图1中有所展示 如图1所示,其中介绍了4个主流技术的发展过程: holistic 方法:通过某种分布假设去直接…
Accepted Papers     Title Primary Subject Area ID 3D computer vision 93 UPnP: An optimal O(n) solution to the absolute pose problem with universal applicability 128 Video Registration to SfM Models 168 Image-based 4-d Modeling Using 3-d Change Detect…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
原文:written by Sebastian Raschka on March 14, 2015 中文版译文:伯乐在线 - atmanic 翻译,toolate 校稿 This article offers a brief glimpse of the history and basic concepts of machine learning. We will take a look at the first algorithmically described neural network…
网易公开课,第6,7,8课 notes,http://cs229.stanford.edu/notes/cs229-notes3.pdf SVM-支持向量机算法概述, 这篇讲的挺好,可以参考   先继续前面对线性分类器的讨论, 通过机器学习算法找到的线性分类的线,不是唯一的,对于一个训练集一般都会有很多线可以把两类分开,这里的问题是我们需要找到best的那条线 首先需要定义Margin, 直观上来讲,best的那条线,应该是在可以正确分类的前提下,离所有的样本点越远越好,why? 因为越靠近分类…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
两种方法都是常见的分类算法,从目标函数来看,区别在于逻辑回归采用的是logistical loss,svm采用的是hinge loss.这两个损失函数的目的都是增加对分类影响较大的数据点的权重,减少与分类关系较小的数据点的权重.SVM的处理方法是只考虑support vectors,也就是和分类最相关的少数点,去学习分类器.而逻辑回归通过非线性映射,大大减小了离分类平面较远的点的权重,相对提升了与分类最相关的数据点的权重.两者的根本目的都是一样的.此外,根据需要,两个方法都可以增加不同的正则化项…
SVM is capable of performing linear or nonlinear classification,regression,and even outlier detection. SVMs are particularly well suited for classification of complex but small- or medium-sized datasets. Linear SVM Classification: Soft Margin Classif…
Recent years have seen a trend for big military movies. Whether it was last year’s British hit Dunkirk, starring movie newcomer Harry Styles, or 2014’s American Sniper, featuring Bradley Cooper as a US Navy SEAL, it’s common to see heroes fighting fo…