《OD学spark》20160925 Spark Core】的更多相关文章

http://blog.csdn.net/u011239443/article/details/56843264 在<深入理解Spark 2.1 Core (九):迭代计算和Shuffle的原理与源代码分析 >我们解说了.以传统Hadoop MapReduce相似的从HDFS中读取数据,再到rdd.HadoopRDD.compute便能够调用函数f,即map中的函数的过程.在<深入理解Spark 2.1 Core (十):Shuffle map端的原理与源代码分析>我们深入解说了s…
第0章 预备知识0.1 Scala0.1.1 Scala 操作符0.1.2 拉链操作0.2 Spark Core0.2.1 Spark RDD 持久化0.2.2 Spark 共享变量0.3 Spark SQL0.3.1 RDD.DataFrame 与 DataSet0.3.2 DataSet 与 RDD 互操作0.3.3 RDD.DataFrame 与 DataSet 之间的转换0.3.4 用户自定义聚合函数(UDAF)0.3.5 开窗函数0.4 Spark Streaming0.4.1 Dst…
一.Hive基本概念.安装部署与初步使用 1. 后续课程 Hive 项目:hadoop hive sqoop flume hbase 电商离线数据分析 CDH Storm:分布式实时计算框架 Spark: 2. 如何学习大数据技术 上课时候,认真听,勤做笔记: 遇到难理解的概念,马上记录下来: 课后多动手,操作过程遇到问题,多思考: 不要遇到问题,首先就问别人: 珍惜问问题的机会: 讲究问题的技巧与方式,提出自己的大概思考思路: 多总结: 总结成文档,作为以后的参考: 归档成自己的知识库: 每个…
本博文是转自如下链接,为了方便自己查阅学习和他人交流.感谢原博主的提供! http://www.aboutyun.com/thread-6849-1-1.html http://www.aboutyun.com/thread-6850-1-1.html 科普Spark,Spark核心是什么,如何使用Spark(1) 阅读本文章可以带着下面问题: 1.Spark基于什么算法的分布式计算(很简单) 2.Spark与MapReduce不同在什么地方 3.Spark为什么比Hadoop灵活 4.Spar…
第1章 Spark 概述1.1 什么是 Spark1.2 Spark 特点1.3 Spark 的用户和用途第2章 Spark 集群安装2.1 集群角色2.2 机器准备2.3 下载 Spark 安装包2.4 配置 Spark Standalone 模式2.5 配置 Spark History Server2.6 配置 Spark HA2.7 配置 Spark Yarn 模式第3章 执行 Spark 程序3.1 执行第一个 spark 程序3.2 Spark 应用提交3.3 Spark shell3…
Spark性能优化的10大问题及其解决方案 问题1:reduce task数目不合适解决方式:需根据实际情况调节默认配置,调整方式是修改参数spark.default.parallelism.通常,reduce数目设置为core数目的2到3倍.数量太大,造成很多小任务,增加启动任务的开销:数目太少,任务运行缓慢. 问题2:shuffle磁盘IO时间长解决方式:设置spark.local.dir为多个磁盘,并设置磁盘为IO速度快的磁盘,通过增加IO来优化shuffle性能: 问题3:map|red…
收录待用,修改转载已取得腾讯云授权 作者 | 蒋专 蒋专,现CDG事业群社交与效果广告部微信广告中心业务逻辑组员工,负责广告系统后台开发,2012年上海同济大学软件学院本科毕业,曾在百度凤巢工作三年,2016年入职微信广告中心. 导语 spark 已经成为广告.报表以及推荐系统等大数据计算场景中首选系统,因效率高,易用以及通用性越来越得到大家的青睐,我自己最近半年在接触spark以及spark streaming之后,对spark技术的使用有一些自己的经验积累以及心得体会,在此分享给大家. 本文…
来源:http://www.cnblogs.com/shishanyuan/p/4700615.html 1.简介 1.1 Spark简介Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架.Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处,Spark以其先进的设计理念,迅速成为社区的热门项目,围绕着Spark推出了Spark SQL.Spark…
虽然SparkStreaming已经停止更新,Spark的重点也放到了 Structured Streaming ,但由于Spark版本过低或者其他技术选型问题,可能还是会选择SparkStreaming. SparkStreaming对于时间窗口,事件时间虽然支撑较少,但还是可以满足部分的实时计算场景的,SparkStreaming资料较多,这里也做一个简单介绍. 一. 什么是Spark Streaming Spark Streaming在当时是为了与当时的Apache Storm竞争,也让S…
大数据体系概览Spark.Spark核心原理.架构原理.Spark特点 大数据体系概览(Spark的地位) 什么是Spark? Spark整体架构 Spark的特点 Spark核心原理 Spark架构原理 spark内核架构 RDD及其特点 Spark SQL VS Hive Spark Streaming VS Storm spark 任务提交流程 小提示:这里,使用axure(原型制作工具),来画图十分方便,个人认为比viso或者是processon等流程图制作工具简单多了. 点击链接,看取…
Spark 的 shell 是一个强大的交互式数据分析工具. 1. 搭建Spark 2. 两个目录下面有可执行文件: bin  包含spark-shell 和 spark-submit sbin 包含 sbin/start-master.sh:在机器上启动一个master实例 sbin/start-slaves.sh:在每台机器上启动一个slave实例 sbin/start-all.sh:同时启动一个master实例和所有slave实例 sbin/stop-master.sh:停止master实…
大数据离线计算hadoop2.x 三周(6天) markdown文本剪辑器 罗振宇--跨年演讲,时间的朋友 http://tech.163.com/16/0101/11/BC87H8DF000915BF.html 勤奋的男人和爱笑的女人运气都不会太差. 1. 什么是Hadoop 2. hadoop生态系统架构功能与原理 3. hadoop核心模块组成 4. hadoop 2.x伪分布式环境搭建与配置.测试 一.前置课程: Linux: Java: 应用程开发>系统层开发 数据库: SQL on…
Spark:使用Spark Shell的两个示例 Python 行数统计 ** 注意: **使用的是Hadoop的HDFS作为持久层,需要先配置Hadoop 命令行代码 # pyspark >>> lines = sc.textFile("/user/mint/README.md") # 创建一个名为lines的RDD.首先要确保README.md在HDFS文件系统相应的路径中.这里的文档是Spark在安装目录下,选择其他文档. >>> lines.…
[Spark][Python]spark 从 avro 文件获取 Dataframe 的例子 从如下地址获取文件: https://github.com/databricks/spark-avro/raw/master/src/test/resources/episodes.avro 导入到 hdfs 系统: hdfs dfs -put episodes.avro 读入: mydata001=sqlContext.read.format("com.databricks.spark.avro&qu…
[Spark][Python]Spark 访问 mysql , 生成 dataframe 的例子: mydf001=sqlContext.read.format("jdbc").option("url","jdbc:mysql://localhost/loudacre")\ .option("dbtable","accounts").option("user","trainin…
Spark核心编程 Spark 核心是整个项目的基础.它提供了分布式任务调度,调度和基本的 I/O 功能.Spark 使用一种称为RDD(弹性分布式数据集)一个专门的基础数据结构,是整个机器分区数据的逻辑集合.RDDS可以用两种方法来创建的;一个是在外部存储系统引用的数据集,第二个是通过应用转换(如map, filter, reducer, join)在现有RDDS. RDD抽象通过语言集成API公开.这简化了编程的复杂性,因为应用程序的处理RDDS方式类似于操纵的本地集合数据. Spark S…
Apache Spark是一个集群计算设计的快速计算.它是建立在Hadoop MapReduce之上,它扩展了 MapReduce 模式,有效地使用更多类型的计算,其中包括交互式查询和流处理.这是一个简单的Spark教程,介绍了Spark核心编程的基础知识. 工业公司广泛的使用 Hadoop 来分析他们的数据集.其原因是,Hadoop框架是基于简单的编程模型(MapReduce),并且它使用的计算解决方案,是可扩展的,柔性的,容错和低成本. 在这里,主要关心的是在查询之间等待时间和等待时间来运行…
科普Spark,Spark是什么,如何使用Spark(1)转自:http://www.aboutyun.com/thread-6849-1-1.html 阅读本文章可以带着下面问题:1.Spark基于什么算法的分布式计算(很简单)2.Spark与MapReduce不同在什么地方3.Spark为什么比Hadoop灵活4.Spark局限是什么5.什么情况下适合使用Spark 科普Spark,Spark核心是什么,如何使用Spark(2)转自:http://www.aboutyun.com/threa…
科普Spark,Spark是什么,如何使用Spark 1.Spark基于什么算法的分布式计算(很简单) 2.Spark与MapReduce不同在什么地方 3.Spark为什么比Hadoop灵活 4.Spark局限是什么 5.什么情况下适合使用Spark 什么是Spark Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点:但不同于…
不多说,直接上干货! 最近,开始,进一步学习spark的最新版本.由原来经常使用的spark-1.6.1,现在来使用spark-2.2.0-bin-hadoop2.6.tgz. 前期博客 Spark on YARN模式的安装(spark-1.6.1-bin-hadoop2.6.tgz + hadoop-2.6.0.tar.gz)(master.slave1和slave2)(博主推荐) 这里我,使用的是spark-2.2.0-bin-hadoop2.6.tgz + hadoop-2.6.0.tar…
说到Spark就不得不提MapReduce/Hadoop, 当前越来越多的公司已经把大数据计算引擎从MapReduce升级到了Spark. 至于原因当然是MapReduce的一些局限性了, 我们一起先来看下Mapreduce的局限性和Spark如何做的改进. Spark概述 MapReduce局限性 1 仅支持Map和Reduce两种操作 2 处理效率极低 Map中间结果写磁盘,Reduce写HDFS,多个MR之间通过HDFS交换数据; 任务调度和启动开销大 无法充分利用内存 Map端和Redu…
关于Spark SQL,首先会想到一个问题:Apache Hive vs Apache Spark SQL – 13 Amazing Differences Hive has been known to be the component of Big data ecosystem where legacy mappers and reducers are needed to process data from HDFS whereas Spark SQL is known to be the c…
Spark--初识spark 一.Spark背景 1)MapReduce局限性 <1>仅支持Map和Reduce两种操作,提供给用户的只有这两种操作 <2>处理效率低效 Map中间结果写磁盘,Reduce写HDFS,多个MR之间通过HDFS交换数据 任务调度和启动开销大: mr的启动开销一,客户端需要把应用程序提交给resourcesManager,resourcesManager去选择节点去运行,快的话几秒钟,慢的话1分钟左右. 开销二,maptask和reducetask的启动…
摘要:结构上Hive On Spark和SparkSQL都是一个翻译层,把一个SQL翻译成分布式可执行的Spark程序. 本文分享自华为云社区<Hive on Spark和Spark sql on Hive有啥区别?>,作者:dayu_dls . 结构上Hive On Spark和SparkSQL都是一个翻译层,把一个SQL翻译成分布式可执行的Spark程序.Hive和SparkSQL都不负责计算.Hive的默认执行引擎是mr,还可以运行在Spark和Tez.Spark可以连接多种数据源,然后…
一.引言 Spark内存计算框架 中国Spark技术峰会 十二场演讲 大数据改变世界,Spark改变大数据 大数据: 以Hadoop 2.x为主的生态系统框架(MapReduce并行计算框架) 存储数据.处理数据 分布式 Spark: 类似于MapReduce的另外一种分布式计算框架 核心: 数据结构:RDD,集合List[T] MapReduce 最大的痛点: IO性能瓶颈,也是所有分布式计算框架的痛点 (1)磁盘IO, input(disk) -> map -> DISK(local)-&…
一.Spark Core 1. 什么是Spark Shuffle Wide Dependencies *ByKey: groupByKey,reduceByKey 关联操作:join,cogroup 窄依赖: 父RDD的每个分区的数据,仅仅只会给子RDD的一个分区. Spark性能优化: 开发优化: 依据业务场景及数据,使用较好的RDD的方法 (1)能使用reduceByKey不要使用groupByKey (2)适当的时候已经处理的数据RDD,进行重新分区 repartition reduceB…
拓展: Hadoop 3.0 NameNode HA NameNode是Active NameNode是Standby可以有多个 HBase Cluster 单节点故障? HBaster -> BackMaster HRegionServer WEBUI 60010 Spark 课程安排分为两个部分: 第一部分:基础篇 SCALA:1天 SparkCore:2天 - MapReduce SparkSQL:1天 - Hive Shark = Hive on Spark 关键,企业中必用的,必须掌握…
JS 相信看这篇文章的你们,都和我一样对Hadoop和Apache Spark的选择有一定的疑惑,今天查了不少资料,我们就来谈谈这两种 平台的比较与选择吧,看看对于工作和发展,到底哪个更好. 一.Hadoop与Spark 1.Spark Spark是一个用来实现快速而通用的集群计算的平台.速度方面,Spark扩展了广泛使用的MapReduce计算模型,而且高效地支持更多计算模式,包括交互式查询和流处理. Spark项目包含多个紧密集成的组件.Spark的核心是一个对由很多计算任务组成的.运行在多…
master为主节点 一个集群中可能运行多个application,因此也可能会有多个driver DAG Scheduler就是讲RDD Graph拆分成一个个stage 一个Task对应一个SparkEnv 客户端提交请求,然后master生成driver,生成对应的SparkContext,然后将任务拆分为多个RDD,对应上述流程 用户自定义Spark程序并且提交后,生成Driver Program,然后生成多个Job,每个JOB根据RDD的宽依赖关系来生成多个stage,一个stage对…
spark优势在于基于内存计算,速度很快,计算的中间结果也缓存在内存,同时spark也支持streaming流运算和sql运算 Mesos是资源管理框架,作为资源管理和任务调度,类似Hadoop中的Yran Tachyon是分布式内存文件系统 Spark是核心计算引擎,能够将数据并行大规模计算 Spark Streaming是流式计算引擎,将每个数据切分成小块采用spark运算范式进行运算 Spark SQL是Spark的SQL ON Hadoop,能够用sql来对数据进行查询等功能 Graph…