一.模型验证 进行模型验证的一个重要目的是要选出一个最合适的模型,对于监督学习而言,我们希望模型对于未知数据的泛化能力强,所以就需要模型验证这一过程来体现不同的模型对于未知数据的表现效果. 这里我们将训练集再分成训练集与验证集两部分,大概比例就是3:1吧.一般来讲不同的训练集.验证集分割的方法会导致其准确率不同,而交叉验证的基本思想是:将数据集进行一系列分割,生成一组不同的训练验证集,然后分别训练模型并计算测试准确率,这样就会得到多个模型与多个准确率,然后取其平均值即可,这样就有效防止因为数据的…