平衡二叉树(AVL)】的更多相关文章

数据结构与算法--从平衡二叉树(AVL)到红黑树 上节学习了二叉查找树.算法的性能取决于树的形状,而树的形状取决于插入键的顺序.在最好的情况下,n个结点的树是完全平衡的,如下图"最好情况"所示,此时树的高度为⌊log2 n⌋ + 1,所以时间复杂度为O(lg n)当我们将键以升序或者降序插入的时候,得到的是一棵斜树,如下图中的"最坏情况",树的高度为n,时间复杂度也变成了O(n) 在最坏情况下,二叉查找树的查找和插入效率很低.为了解决这个问题,引出了平衡二叉树(AV…
二叉查找树(BST).平衡二叉树(AVL树)(只有插入说明) 二叉查找树(BST) 特殊的二叉树,又称为排序二叉树.二叉搜索树.二叉排序树. 二叉查找树实际上是数据域有序的二叉树,即对树上的每个结点,都满足其左子树上所有结点的数据域均小于或等于根结点的数据域,右子树上所有结点的数据域均大于根结点的数据域.如下图所示: 二叉查找树通常包含查找.插入.建树和删除操作. 二叉查找树的创建 对于一棵二叉查找树,其创建与二叉树的创建很类似,略有不同的是,二叉查找树,为了保证整棵树都关于根结点的大小呈左小右…
平衡二叉树 AVL( 发明者为Adel'son-Vel'skii 和 Landis)是一种二叉排序树,其中每一个节点的左子树和右子树的高度差至多等于1. 首先我们知道,当插入一个节点,从此插入点到树根节点路径上的所有节点的平衡都可能被打破,如何解决这个问题呢? 这里不讲大多数书上提的什么平衡因子,什么最小不平衡子树,实际上让人(me)更加费解.实际上你首要做的就是先找到第一个出现不平衡的节点,也就是从插入点到root节点的路径上第一个出现不平衡的节点,即深度最深的那个节点A,对以它为根的子树做一…
1. [定义] 二叉排序树(二拆查找树)中,左子树都比节点小,右子树都比节点大,递归定义. [性能] 二叉排序树的性能取决于二叉树的层数 最好的情况是 O(logn),存在于完全二叉排序树情况下,其访问性能近似于折半查找(见下图 a): 最差时候会是 O(n),比如插入的元素是有序的,生成的二叉排序树就是一个链表,这种情况下,需要遍历全部元素才行(见下图 b). 2. [定义] 平衡二叉树(AVL)中,符合二叉查找树的基础上,任意节点的两个子树的最大高度差为一. 需要左旋和右旋 3. [定义]…
平衡二叉树(AVL 树) 1 看一个案例(说明二叉排序树可能的问题) 给你一个数列{1,2,3,4,5,6},要求创建一颗二叉排序树(BST), 并分析问题所在.  左边 BST 存在的问题分析: 1) 左子树全部为空,从形式上看,更像一个单链表. 2) 插入速度没有影响 3) 查询速度明显降低(因为需要依次比较), 不能发挥 BST 的优势,因为每次还需要比较左子树,其查询速度比 单链表还慢 4) 解决方案-平衡二叉树(AVL)   2 基本介绍 1) 平衡二叉树也叫平衡二叉搜索树(Self…
(百度百科)在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增加和删除可能需要通过一次或多次树旋转来重新平衡这个树.AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 "An algorithm for the organization of information" 中发表了它.…
平衡二叉树的插入过程:http://www.cnblogs.com/hujunzheng/p/4665451.html 对于二叉平衡树的删除采用的是二叉排序树删除的思路: 假设被删结点是*p,其双亲是*f,不失一般性,设*p是*f的左孩子,下面分三种情况讨论: ⑴ 若结点*p是叶子结点,则只需修改其双亲结点*f的指针即可. ⑵ 若结点*p只有左子树PL或者只有右子树PR,则只要使PL或PR 成为其双亲结点的左子树即可. ⑶ 若结点*p的左.右子树均非空,先找到*p的中序前趋结点*s(注意*s是*…
平衡二叉树(Balancedbinary tree)是由阿德尔森-维尔斯和兰迪斯(Adelson-Velskiiand Landis)于1962年首先提出的,所以又称为AVL树. 定义:平衡二叉树或为空树,或为如下性质的二叉排序树: (1)左右子树深度之差的绝对值不超过1; (2)左右子树仍然为平衡二叉树. 平衡二叉树可以避免排序二叉树深度上的极度恶化,使树的高度维持在O(logn)来提高检索效率. 因为插入节点导致整个二叉树失去平衡分成如下的四种情况: 假设由于在二叉排序树上插入节点而失去平衡…
平衡二叉树(Balanced Binary Tree)是二叉查找树的一个进化体,也是第一个引入平衡概念的二叉树.1962年,G.M. Adelson-Velsky 和 E.M. Landis发明了这棵树,所以它又叫AVL树.平衡二叉树要求对于每一个节点来说,它的左右子树的高度之差不能超过1,如果插入或者删除一个节点使得高度之差大于1,就要进行节点之间的旋转,将二叉树重新维持在一个平衡状态.这个方案很好的解决了二叉查找树退化成链表的问题,把插入,查找,删除的时间复杂度最好情况和最坏情况都维持在O(…
1.定义 平衡二叉树(Balanced Binary Tree)是二叉查找树的一个改进,也是第一个引入平衡概念的二叉树.1962年,G.M. Adelson-Velsky 和 E.M. Landis发明了这棵树,所以它又叫AVL树.平衡二叉树要求对于每一个节点来说,它的左右子树的高度(深度)之差绝度值不能超过1.如果插入或者删除一个节点使得高度之差大于1,就要进行节点之间的旋转,将二叉树重新维持在一个平衡状态.这个方案很好的解决了二叉查找树退化成链表的问题,把插入,查找,删除的时间复杂度最好情况…
学习过了二叉查找树,想必大家有遇到一个问题.例如,将一个数组{1,2,3,4}依次插入树的时候,形成了图1的情况.有建立树与没建立树对于数据的增删查改已经没有了任何帮助,反而增添了维护的成本.而只有建立的树如图2,才能够最大地体现二叉树的优点.            在上述的例子中,图2就是一棵平衡二叉树.科学家们提出平衡二叉树,就是为了让树的查找性能得到最大的体现(至少我是这样理解的,欢迎批评改正).下面进入今天的正题,平衡二叉树. AVL的定义 平衡二叉查找树:简称平衡二叉树.由前苏联的数学…
平衡二叉树是一种二叉排序树,其中每一个节点的左子树和右子树的高度至多等于1,平衡二叉树又称为AVL树. 将二叉树节点的左子树深度减去右子树深度的值称为平衡因子BF,平衡二叉树上所有节点的平衡因子只可能是-1,0或者1. 距离插入点最近的,且平衡因子的绝对值大于1的结点为根的子树,我们称为最小不平衡子树. 平衡二叉树实现原理 先来看一个例子: 对于数组a[10]={3,2,1,4,5,6,7,10,9,8}构建平衡二叉树. 按照二叉排序树的方式插入新的元素,当插入1的时候,使得当前二叉树失去平衡:…
相关介绍:  二叉查找树的查找效率与二叉树的形状有关,对于按给定序列建立的二叉排序树,若其左.右子树均匀分布,则查找过程类似于有序表的二分查找,时间复杂度变为O(log2n).当若给定序列原来有序,则建立的二叉查找树就蜕化为单链表,其查找效率同顺序查找一样,时间复杂度为O(n).因此,在构造二叉查找树的过程中,当出现左右子树分布不均匀时,若能对其进行调整,使其依然保持均匀,则就能有效的保证二叉查找树仍具有较高的查找效率.而平衡二叉树,正是这样的一棵树.  平衡二叉树,又称为AVL树,它或是一棵空…
一.平衡二叉树 任何一个数据的查找过程都需要从根结点出发,沿某一个路径朝叶子结点前进.因此查找中数据比较次数与树的形态密切相关. 对于二叉树来说,当树中每个结点左右子树高度大致相同时,树高为logN.则平均查找长度与logN成正比,查找的平均时间复杂度在O(logN)数量级上.当先后插入的关键字有序时,BST退化成单支树结构.此时树高n.平均查找长度为(n+1)/2,查找的平均时间复杂度在O(N)数量级上. 二叉查找树在最差情况下竟然和顺序查找效率相当,这是无法仍受的.事实也证明,当存储数据足够…
/*自己看了半天也没看懂代码,下次再补充说明*/ 解释: 平衡二叉树(Self-Balancing Binary Search Tree 或Height-Balanced Binary Search Tree),是一种二叉排序树,其中每一个节点的左子树和右子树的高度差至多等于1. 实现原理: 平衡二叉树构建的基本思想就是在构建二又排序树的过程中,每当插入一个结点时,先检查是否因插入而破坏了树的平衡性,若是,则找出最小不平衡子树.在保持二又排序树特性的前提下,调整最小不平衡子树中各结点之间的链接关…
前言 上一篇文章讨论的二叉搜索树,其时间复杂度最好的情况下是O(log(n)),但是最坏的情况是O(n),什么时候是O(n)呢? 像这样: 如果先插入10,再插入20,再插入30,再插入40就会成上边这个样子 这个就像是双向链表,我们期望它是下面这个样子: 所以我们希望有一种策略能够将第一个图变成第二个图,或者说使树的结构不会产生像第一种图的形式 实现这种策略的一种方式是AVL树 AVL树 AVL树的名称是以它的发明家的名字命名的:Adel’son-Vel’skii和Landis 满足高度平衡属…
二叉查找树(BST) 特殊的二叉树,又称为排序二叉树.二叉搜索树.二叉排序树. 二叉查找树实际上是数据域有序的二叉树,即对树上的每个结点,都满足其左子树上所有结点的数据域均小于或等于根结点的数据域,右子树上所有结点的数据域均大于根结点的数据域.如下图所示: 二叉查找树通常包含查找.插入.建树和删除操作. 二叉查找树的创建 对于一棵二叉查找树,其创建与二叉树的创建很类似,略有不同的是,二叉查找树,为了保证整棵树都关于根结点的大小呈左小右大的特征,在创建时,需要根据当前结点的大小来判断插入位置,给出…
AVL的定义 平衡二叉树:是一种特殊的二叉排序树,其中每一个节点的左子树和右子树的高度差至多等于1.从平衡二叉树的名字中可以看出来,它是一种高度平衡的二叉排序树.那么什么叫做高度平衡呢?意思就是要么它是一颗空树,要么它的左子树和右子树都是平衡二叉树,且左子树和右子树的深度只差的绝对值绝对不超过1. 平衡因子:将二叉树上节点的左子树深度减去右子树深度的值称为平衡因子BF.则平衡二叉树上所有节点的平衡因子只可能是1,-1,0. 只要二叉树上有一个节点的平衡因子的绝对值大于1,那么该二叉树就是不平衡的…
看完了第一篇博客,相信大家对于平衡二叉树的插入调整以及删除调整已经有了一定的了解,下面,我们开始介绍代码部分. 首先,再次提一下使用的结构定义 typedef char KeyType; //关键字 typedef struct MyRcdType //记录 { KeyType key; }RcdType,*RcdArr; typedef enum MyBFStatus //为了方便平衡因子的赋值,这里进行枚举 { //RH,EH,LH分别表示右子树较高,左右子树等高,左子树较高 RH,EH,L…
AVL是最先发明的自平衡二叉查找树算法.在AVL中任何节点的两个儿子子树的高度最大差别为一,所以它也被称为高度平衡树,n个结点的AVL树最大深度约1.44log2n.查找.插入和删除在平均和最坏情况下都是O(log n).增加和删除可能需要通过一次或多次树旋转来重新平衡这个树. 定义 用LH,EH,RH分别表示左子树高,等高,右子树高,即平衡因子1.0.-1 #include <stdio.h> #include <stdlib.h> #include <stdbool.h&…
学习过了二叉查找树,想必大家有遇到一个问题.例如,将一个数组{1,2,3,4}依次插入树的时候,形成了图1的情况.有建立树与没建立树对于数据的增删查改已经没有了任何帮助,反而增添了维护的成本.而只有建立的树如图2,才能够最大地体现二叉树的优点.            在上述的例子中,图2就是一棵平衡二叉树.科学家们提出平衡二叉树,就是为了让树的查找性能得到最大的体现(至少我是这样理解的,欢迎批评改正).下面进入今天的正题,平衡二叉树. AVL的定义 平衡二叉查找树:简称平衡二叉树.由前苏联的数学…
平衡二叉树(AVL Tree) 转载至:https://www.cnblogs.com/jielongAI/p/9565776.html 在学习算法的过程中,二叉平衡树是一定会碰到的,这篇博文尽可能简明易懂的介绍下二叉树的相关概念,然后着重讲下什么事平衡二叉树. (由于作图的时候忽略了箭头的问题,正常的树一般没有箭头,虽然不影响描述的过程,但是还是需要注意,所以还请读者忽略一下部分图的箭头) 一.二叉(查找)树 二叉查找树(Binary Search Tree)是二叉树的一种,其树节点(inte…
性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树. 定义:平衡二叉树或为空树,或为如下性质的二叉排序树: (1)左右子树深度之差的绝对值不超过1; (2)左右子树仍然为平衡二叉树. 平衡因子BF=左子树深度-右子树深度. 平衡二叉树每个结点的平衡因子只能是1,0,-1.若其绝对值超过1,则该二叉排序树就是不平衡的. 如图所示为平衡树和非平衡树示意图: 平衡二叉树算法思想: 若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性. (1)LL型平衡…
平衡二叉树(Self-Balancing Binary Search Tree/Height-Balanced Binary Search Tree),是一种二叉排序树,当中每个节点的左子树和右子树的高度差至多等于1. 平衡二叉树的前提是二叉排序树,不是二叉排序树的都不是平衡二叉树. 平衡因子BF(Balance Factor):二叉树上节点的左子树深度减去右子树深度的值. 最小不平衡子树:距离插入节点近期的.且平衡因子的绝对值大于1的节点为根的子树. 下图中,新插入节点37时.距离它近期的平衡…
平衡二叉树的定义: 任意的左右子树高度差的绝对值不超过1,将这样的二叉树称为平衡二叉树,二叉平衡树前提是一个二叉排序树. 平衡二叉树的插入: 二叉平衡树在插入或删除一个结点时,先检查该操作是否导致了树的不平衡,若是,则在该路径上查找最小的不平衡树,调节其平衡. 4种平衡调整如下(结点的数字仅作标记作用): ①LL:右单旋转 ②RR:左单旋转 ③LR平衡旋转:先左后右 ④RL平衡旋转:先右后左 平衡二叉树查找:平衡二叉树查找过程等同于二叉排序树相同,因此平衡二叉树查找长度不超过数的长度,及其平均查…
平衡二叉树(Balanced Binary Tree)具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树 右旋:在插入二叉树的时候,根节点的右侧高度大于左侧高度,且绝对值超过了2,并且在root.左侧的值大于插入的值时发生右旋 . 左右旋:在插入二叉树的时候,根节点的右侧高度大于左侧高度,且绝对值超过了2,并且在root.左侧的值小于插入的值时发生,先对root的左子树发生左旋,再对root右旋. 左旋:在插入二叉树的时候,根节点的左侧高度大…
剑指 Offer 55 - II. 平衡二叉树 Offer_55_2 题目描述 方法一:使用后序遍历+边遍历边判断 package com.walegarrett.offer; /** * @Author WaleGarrett * @Date 2021/2/9 20:58 */ /** * 题目描述:输入一棵二叉树的根节点,判断该树是不是平衡二叉树. * 如果某二叉树中任意节点的左右子树的深度相差不超过1,那么它就是一棵平衡二叉树. */ import sun.reflect.generics…
# -*- coding: utf-8 -*- from enum import Enum #参考http://blog.csdn.net/niteip/article/details/11840691/ #参考https://www.cnblogs.com/suimeng/p/4560056.html #todo 还没有考虑高度的增减,只考虑了平衡因子 #todo 加上非递归遍历二叉树 class BFStatus(Enum): # 左子树的高度减去右子树的高度 RH,EH,LH分别表示右子树…
* 左左就右旋,右右就左旋 #include<bits/stdc++.h> using namespace std; typedef long long ll; const int maxn = 1e9; const int maxm = 1e5 + 5; const int inf = 2147483647; using namespace std; struct node { node *left, *right; int key; }; node *LL(node *root) { no…
平衡二叉树(AVL树)定义如下:平衡二叉树或者是一棵空树,或者是具有以下性质的二叉排序树: (1)它的左子树和右子树的高度之差绝对值不超过1: (2)它的左子树和右子树都是平衡二叉树. AVL树避免了平衡二叉树初始序列有序建立的类似单链表情况,提高了查找效率. 1.AVL树的相关参量定义 #define _CRT_SECURE_NO_DEPRECATE #include<stdio.h> #include<stdlib.h> #include<windows.h> #d…