B树、B-树、B+树、B*树 红黑树】的更多相关文章

B+树做索引而不用B-树 那么Mysql如何衡量查询效率呢?– 磁盘IO次数. 一般来说索引非常大,尤其是关系性数据库这种数据量大的索引能达到亿级别,所以为了减少内存的占用,索引也会被存储在磁盘上. B-树/B+树的特点就是每层节点数目非常多,层数很少,目的就是为了减少磁盘IO次数,但是B-树的每个节点都有data域(指针),这无疑增大了节点大小,说白了增加了磁盘IO次数(磁盘IO一次读出的数据量大小是固定的,单个数据变大,每次读出的就少,IO次数增多,一次IO多耗时), 而B+树除了叶子节点其…
首先讲解一下AVL树: 例如,我们要输入这样一串数字,10,9,8,7,15,20这样一串数字来建立AVL树 1,首先输入10,得到一个根结点10 2,然后输入9, 得到10这个根结点一个左孩子结点9 3,再输入8,这个时候8,9,10就在一条线上了,这时候就需要旋转,让9成为根结点 然后就这样一直输入,遇到不能满足AVL条件的时候就旋转. 发现了没有,AVL树为了满足绝对的平衡,在中途会有很多次这样的旋转. 然而红黑树的它的条件是那5条性质,这5条性质没有要求绝对平衡,这样同样的数据建立红黑树…
前言 11.1新的一月加油!这个购物狂欢的季节,一看,已囊中羞涩!赶紧来恶补一下红黑树和2-3树吧!红黑树真的算是大名鼎鼎了吧?即使你不了解它,但一定听过吧?下面跟随我来揭开神秘的面纱吧! 一.2-3树 1.抢了红黑树的光环? 今天的主角是红黑树,是无疑的,主角光环在呢!那2-3树又是什么鬼呢?学习2-3树不仅对理解红黑树有帮助,对理解B类树,也是有巨大帮助的,所以学习2-3树很必要! 2.基本性质 2-3树满足二分搜索树的基本性质,但节点可以存放一个元素或两个元素!如下图,就是2-3树: 说明…
出处:https://www.jianshu.com/p/86a1fd2d7406 写在前面,好像不同的教材对b树,b-树的定义不一样.我就不纠结这个到底是叫b-树还是b-树了. 如图所示,区别有以下两点: B+树中只有叶子节点会带有指向记录的指针,而B树则所有节点都带有,在内部节点出现的索引项不会再出现在叶子节点中. B+树中所有叶子节点都是通过指针连接在一起,而B树不会. B+树的优点: 非叶子节点不会带上指向记录的指针,这样,一个块中可以容纳更多的索引项,一是可以降低树的高度.二是一个内部…
B B+运用在file system database这类持续存储结构,同样能保持lon(n)的插入与查询,也需要额外的平衡调节.像mysql的数据库定义是可以指定B+ 索引还是hash索引. C++ STL中的map就是用红黑树实现的.AVL树和红黑树都是二叉搜索树的变体,他们都是用于搜索.因为在这些书上搜索的时间复杂度都是O(h),h为树高,而理想状况是h为n.所以构造的办法就是把二叉搜索树改造成AVL树或者红黑树,AVL树是严格维持平衡的,红黑树是黑平衡的.但是维持平衡又需要额外的操作,这…
什么是二叉树? 在计算机科学中,二叉树是每个节点最多有两个子树的树结构.通常子树被称作“左子树”和“右子树”,左子树和右子树同时也是二叉树.二叉树的子树有左右之分,并且次序不能任意颠倒.二叉树是递归定义的,所以一般二叉树的相关题目也都可以使用递归的思想来解决,当然也有一些可以使用非递归的思想解决,我下面列出的一些算法有些采用了递归,有些是非递归的. 什么是二叉排序树? 二叉排序树又叫二叉查找树或者二叉搜索树,它首先是一个二叉树,而且必须满足下面的条件: 1)若左子树不空,则左子树上所有结点的值均…
平衡树是平时经常使用数据结构. C++/JAVA中的set与map都是通过红黑树实现的. 通过了解平衡树的实现原理,可以更清楚的理解map和set的使用场景. 下面介绍AVL树和红黑树. 1. AVL树 2.红黑树 在一颗含有N个结点的树中,我们希望树高为~lgN,这样我们就能保证所有查找都能在~lgN此比较内结束,就和二分查找一样.不幸的是,在动态插入中保证树的完美平衡的代价太高了.我们放松对完美平衡的要求,使符号表API中所有操作均能够在对数时间内完成. 2-3查找树 为了保证查找树的平衡性…
为什么Linux早先使用AVL树而后来倾向于红黑树?       实际上这是由红黑树的有用主义特质导致的结果,本短文依旧是形而上的观点.红黑树能够直接由2-3树导出.我们能够不再提红黑树,而仅仅提2-3树.由于2-3树的操作太简单.另外,不论什么红黑树的操作和特性都能够映射到2-3树中.因此红黑树和AVL树的比較就成了2-3树和AVL树的比較. 它们俩的差别在哪?2-3树的平衡是完美平衡的.可是树杈数量却能够是3个,而AVL树差一点点就完美平衡的标准二叉树,它仅仅同意子树的高度差最多为1.可见这…
add by zhj: AVL树和红黑树都是平衡二叉树,虽然AVL树是最早发明的平衡二叉树,但直接把平衡二叉树等价于AVL树,我认为非常不合适. 但很多地方都在这么用.两者的比较如下 平衡二叉树类型 平衡度 调整频率 适用场景 AVL树 高 高 查询多,增/删少 红黑树 低 低 增/删频繁 原文:https://blog.csdn.net/u010899985/article/details/80981053 一,AVL树 (1)简介 一般用平衡因子判断是否平衡并通过旋转来实现平衡,左右子树树高…
二叉搜索树 每个节点只存储一个关键字, 每个节点最多有两个子节点, 左子节点存储的关键字小于本节点存储的关键字 右子节点存储的关键字大于本节点存储的关键字 搜索时,从根节点开始搜索,小于走左结点,大于走右结点,等于则命中: 平衡二叉树 在原二叉搜索树的基础上加上平衡算法,即为平衡二叉树 平衡算法 平衡算法是一种在二叉搜索树中插入节点和删除结点时对树调整的策略 B树(即B-树) 它是多路搜索树(二叉树每个节点最多只有两个子节点,多路搜索树没有这个限制) 非叶子节点,既放了n个关键字,又放了(n+1…