当我们想研究不同sample的某个变量A之间的差异时,往往会因为其它一些变量B对该变量的固有影响,而影响不同sample变量A的比较,这个时候需要对sample变量A进行标准化之后才能进行比较.标准化的方法是对sample 的 A变量和B变量进行loess回归,拟合变量A关于变量B的函数 f(b),f(b)则表示在B的影响下A的理论取值,A-f(B)(A对f(b)残差)就可以去掉B变量对A变量的影响,此时残差值就可以作为标准化的A值在不同sample之间进行比较. Loess局部加权多项式回…
当我们想研究不同sample的某个变量A之间的差异时,往往会因为其它一些变量B对该变量的固有影响,而影响不同sample变量A的比较,这个时候需要对sample变量A进行标准化之后才能进行比较.标准化的方法是对sample 的 A变量和B变量进行loess回归,拟合变量A关于变量B的函数 f(b),f(b)则表示在B的影响下A的理论取值,A-f(B)(A对f(b)残差)就可以去掉B变量对A变量的影响,此时残差值就可以作为标准化的A值在不同sample之间进行比较. Loess局部加权多项式回归…
R是向量化的语言,最突出的特点是对向量的运算不需要显式编写循环语句,它会自动地应用于向量的每一个元素.对象是R中存储数据的数据结构,存储在内存中,通过名称或符号访问.对象的名称由大小写字母.数字0-9.点号和下划线组成,名称是区分大小写的,并且不能以数字开头,特殊的对象名称可以通过界定符 `` 来转为合法的对象名称,注意,点号( . ) 被视为没有特殊含义的单字符. R语言非常灵活,例如: R语言区分大小写,不管是变量名和函数名,都是大小写敏感的. 直接给变量赋值,R中不能显式声明变量和类型:…
本文对应<R语言实战>第15章:处理缺失数据的高级方法 本文仅在书的基础上进行简单阐述,更加详细的缺失数据问题研究将会单独写一篇文章. 处理缺失值的一般步骤: 识别缺失数据: 检查导致数据缺失的原因: 删除包含缺失值的实例或用合理的数值代替(插补)缺失值. 缺失数据的分类: 完全随机缺失(MCAR):某变量的缺失数据与其他任何观测或未观测的变量都不相关: 随机缺失(MAR):某变量上的缺失数据与其他观测变量相关,与它自己的未观测值不相关: 非随机缺失(NMAR):不属于MCAR或MAR的变量.…
古典概型的样本总量是一定的,且每种可能的可能性是相同的, 1.中位数:median(x) 2.百分位数:quantile(x)或者quantile(x,probe=seq(0,1,0.2)) #后面这个是设置参数,零到一的范围,每隔0.2算一次 不知道叫啥的很方便的函数:fivenum(x,na.rm=TRUE) #输出五个数最大值.最小值.下四分位数.上四分位数.中位数 3.协方差:用于看两组数据之间的关系,看看是不是有一定的关联性 他有一个相关系数r,r越接近1,则相关性越高,反之,越接近零…
library(randomForest)model.forest<-randomForest(Species~.,data=iris)pre.forest<-predict(model.forest,iris)table(pre.forest,iris$Species) library(rpart)library(randomForest)model.forest<-randomForest(Kyphosis~.,data=kyphosis)pre.forest<-predict…
4.1 R绘图概述 以下两个函数,可以分别展示二维,三维图形的示例: >demo(graphics) >demo(persp) R提供了多种绘图相关的命令,可分成三类: 高级绘图命令:在图形设备上产生一个新的图区,它可能包括坐标轴.标签.标题等. 低级绘图命令:在一个己经存在的图形上加上更多的图形元素,如额外的点.线和标签. 交互式图形命令:允许交互式地用鼠标在一个已经存在的图形.上添加图形信息或者提取图形信息. 使用R语言作图,主要按照以下步骤进行: ①取原始数据,准备好绘图需要的变量. ②…
R语言笔记 学习R语言对我来说有好几个地方需要注意的,我觉得这样的经验也适用于学习其他的新的语言. 语言的目标 我理解语言的目标就是这个语言是用来做什么的,为什么样的任务服务的,也就是设计这个语言的动机.比如C++是为系统编程服务的,java是为企业级应用服务的.R语言是用于统计分析,这样在R的系统中有大量的库(或者是package)用来实现特定的统计方法. 基本的数据类型 学习各个语言的第一步是了解这个语言的最基本的数据类型,这决定如何使用变量进行计算. 基本数据类型是直接由语言本身所定义的变…
学习一门新的语言,率先学习输出hello world.我们就从这里开始学习. 首先打开RStudio这个IDE,然后在左边输入: > mystr <- "hello world" > print(mystr) 如图所示,当我们在左边撸完之后,右边可以看到我们刚才的变量. 这里,关于R语言中的赋值语句是: 变量  <-  值,不同其他语言的=,但是也可以使用=赋值,但是不推荐.输出语句是print(值) 我们可以使用class()方法查看它的类型.如: 同时,在R…
1.向量 向量是R语言中最基本的数据类型,在R语言中没有单独的变量. (1)  创建向量 R语言中可以用 = 或者 <- 来赋值. 向量名 <- 向量 或  向量名 = 向量 向量的创建方式有c()函数,seq()函数等. 注:R中的向量默认为列向量,如果要得到行向量需要对其进行转置. (2)  引用 待引用向量为:test = c(6,7,8,9,10). a.用下标引用 向量名[下标值] 或  向量名[下标值1:下标值2] (下标值1至下标值2的所有数值) 注:R语言下标值从1开始. 另外…
R是一个有着统计分析功能及强大作图功能的软件系统,是由Ross Ihaka和Robert Gentleman共同创立.它是属于GNU系统的一个自由.免费.源码开放的软件,同一时候也是一个用于统计计算和统计制图的优秀工具. 一.R的发展历史 要说R.就不得不先来说一下S语言. 1980年左右.AT&T贝尔实验室设计出一种在统计领域广泛使用的S语言. S语言是一种解释型语言.被设计用来进行数据探索.统计分析和作图. S语言最初的实现版本号主要是S-PLUS.它是一个基于S语言的商业软件,由MathS…
#---------------------------------------- # 功能描述:演示C50建模过程 # 数据集:汉堡大学信贷模型,信贷数据 # #---------------------------------------- #第一步:收集数据 # import the CSV file credit <- read.csv("/Users/chenyangang/R语言/data/credit.csv", stringsAsFactors = TRUE) #…
#---------------------------------------- # 功能描述:演示kNN建模过程 # 数据集:威斯康星乳腺癌诊断 # #---------------------------------------- #第一步:收集数据 # import the CSV file wbcd <- read.csv("/Users/chenyangang/R语言/data/wisc_bc_data.csv", stringsAsFactors = FALSE)…
转自http://www.dataguru.cn/article-1602-1.html 看到很多的R语言教材,介绍的编辑器或者IDE都是很简陋的那些,就没有见到有人提到RStudio.对于不使用Emacs的人来说,RStudio真的是一个很好很好的IDE. http://www.rstudio.org/ 在这里就可以下载了,还支持多平台,windows,Linux,Mac都能用,非常好.当然,它的好不仅是夸平台,还有许许多多的有点.下面我将详细介绍它. 下面就是它的主界面. 从图上可以看出,它…
R语言中文社区历史文章整理(类型篇)   R包: R语言交互式绘制杭州市地图:leafletCN包简介 clickpaste包介绍 igraph包快速上手 jiebaR,从入门到喜欢 Catterplots包,让你绘制不一样的图 今天再来谈谈REmap包 ggplot2你需要知道的都在这... R访问数据库管理系统(通过RODBC包和RMySQL包两种方式) NLP——自然语言处理(三)text2vec包 Rattle:数据挖掘的界面化操作 借助caret包实现特征选择的工作 R语言的高质量图形…
请先安装好R和RStudio 如果不干别的,控制台就是一个内置计算器 2 * 3 #=> 6 sqrt(36) #=> 6, square root log10(100) #=> 2, log base 10 10 / 3 #=> 3.3, 10 by 3 10 %/% 3 #=> 3, quotient of 10 by 3 10 %% 3 #=> 1, remainder of 10 by 3 余数 分配符 a <- 10 # assign 10 to 'a'…
在R语言里面,DataFrame的一列数据本质上可以认为是一个向量或列表,但是一行数据不是. 今天有一个31列的数据集,由于放在第一行的变量名格式不规范,读入数据的时候不能顺带读入变量名.于是跳过首行,先直接读入数据,之后手动给DataFrame命名. 为了避免出错,把变量第一行作为DataFrame读入,于是得到一个只有一行的DataFrame. headers <- read_table2("headers.dat", col_names=FALSE) headers <…
写在前面 3 年的硕士生涯一转眼就过去了,和社交网络也打了很长时间交道.最近突然想给自己挖个坑,想给这 3 年写个总结,画上一个句号.回想当时学习 R 语言时也是非常戏剧性的,开始科研生活时到处发邮件要源代码,发完最后一封本以为又是无功而返,很意外的收到了秒回的邮件,邮件中附上了由 R 语言编写的实验代码.当时过于开心,因为终于有热心的作者回复了,以至于没有仔细考虑,想都没想对着满是警告的代码开始了 R 语言学习之旅.之后的几天陆陆续续的收到了其他作者的回复,实验代码多是使用 Python 构建…
1. 背景 R语言和Python用于数据分析和数据处理,并生成相应的直方图和散点图 需要实现一个展示平台,后端使用Java,分别调用R语言和调用Python,并返回数据和图给前端显示 这个平台主要实现多维度数据的特征选择,以及数据集协变量偏移(Covariate shift)的纠正的功能 本质就是一个Java调用R语言以及Java调用Python的Demo,做得很简单,大神勿喷 2. 技术栈 Java 用的是 Springboot R语言 Python 前端用的是 Vue + ElementUI…
数据解析 XML是一种可扩展标记语言,它被设计用来传输和存储数据.XML是各种应用程序之间进行数据传输的最常用的工具.它与Access,Oracle和SQL Server等数据库不同,数据库提供了更强有力的数据存储和分析能力,例如:数据索引.排序.查找.相关一致性等,它仅仅是存储数据.事实上它与其他数据表现形式最大的不同是:它极其简单,这是一个看上去有点琐细的优点,但正是这点使它与众不同. 针对XML格式数据,R语言XML包可以对其进行数据导入与处理,详见下面的案例说明. 案例1 直接输入一段标…
归一化化就是要把你需要处理的数据经过处理后(通过某种算法)限制在你需要的一定范围内.首先归一化是为了后面数据处理的方便,其次是保正程序运行时收敛加快. R语言中的归一化函数:scale 数据归一化包括数据的中心化和数据的标准化. 1. 数据的中心化所谓数据的中心化是指数据集中的各项数据减去数据集的均值.例如有数据集1, 2, 3, 6, 3,其均值为3,那么中心化之后的数据集为1-3,2-3,3-3,6-3,3-3,即:-2,-1,0,3,0 2. 数据的标准化所谓数据的标准化是指中心化之后的数…
对着满屏的游戏后台数据,需要快速了解数据特征,一种茫然无从下手的感觉? 本文在游戏后台数据中,如何通过R语言快速的了解游戏后台的数据特征,以及统计各个数据之间的相关系数,并通过相关图来发现其中相关系数较高的数据,从而通过R得到高相关系数之间的线性回归方程,最后通过矩阵散点图来初步发现数据中的一些规律解决相应的问题.附:本文需要安装corrgram和car包 具体代码如下: library(corrgram) library(car) summary(data9) cor(data9) scatt…
R语言系列:生成数据 (2014-05-04 17:41:57) 转载▼ 标签: r语言 教育 分类: 生物信息 生成规则数据1.使用“:“,如x=1:10,注意该方法既可以递增也可以递减,如y=10:12.seq,有两种用法:①seq(起点,终点,步长); ②seq(length=9, from=1, to=5)    seq还有一种简写:seq(x)    #相当于1:length(x),但当length(x)为0时,返回integer(0)3.c(1,2,8)4.使用scan(),可以等待…
1.数据的中心化 所谓数据的中心化是指数据集中的各项数据减去数据集的均值. 例如有数据集1, 2, 3, 6, 3,其均值为3 那么中心化之后的数据集为1-3,2-3,3-3,6-3,3-3,即:-2,-1,0,3,0 2.数据的标准化 所谓数据的标准化是指中心化之后的数据在除以数据集的标准差,即数据集中的各项数据减去数据集的均值再除以数据集的标准差. 例如有数据集1, 2, 3, 6, 3,其均值为3,其标准差为1.87 那么标准化之后的数据集为(1-3)/1.87,(2-3)/1.87,(3…
本文为带大家了解R语言以及分段式的步骤教程! 人们学习R语言时普遍存在缺乏系统学习方法的问题.学习者不知道从哪开始,如何进行,选择什么学习资源.虽然网络上有许多不错的免费学习资源,然而它们多过了头,反而会让人挑花了眼. 为了构建R语言学习方法,我们在Vidhya和DataCamp中选一组综合资源,帮您从头学习R语言.这套学习方法对于数据科学或R语言的初学者会很有用;如果读者是R语言的老用户,则会由本文了解这门语言的部分最新成果. R语言学习方法会帮助您快速.高效学习R语言. 前言 在开始学习之前…
既然了解了R语言的基本数据类型,那么如何将庞大的数据送入R语言进行处理呢?送入的数据又是如何在R语言中进行存储的呢?处理这些数据的方法又有那些呢?下面我们一起来探讨一下. 首先,数据输入最直接最直观的方法就是键盘输入,在上面几篇都已经讲到,利用c创建向量,利用matrix创建矩阵,利用data.frame创建数据框等,但是我们处理的数据往往比较多,键盘输入在面对如此庞大的数据时显然不现实,当然你可以花费好几天来输入数据而且保证不出错除外,而且待处理的一般都存储在Excel,网页,数据库其他中介中…
第一篇——用几分钟了解R语言入门知识 第二篇——用几分钟了解R语言入门知识(续) 关于数据分析学习笔记的计划(以及目录)…
上图是R语言绘制的按地域分布的数据图.更科学,更严谨,也更有质感的样子. 今天瞎写点东西,我在想数据分析的意义是什么,也许就是研究事物存在的形式.而事物存在的形式是什么样子呢,从最初的三维空间,爱因斯坦伯伯把时间也拉了进来,于是时间作为一种变化的空间而存在着,成为第四维.现在好像还发现了第五空间,可能是人的心理空间或者意识空间,还有人说是曲率,不一而足.个人认为i,所有的事物应该都是彼此联系的,没有单纯的独立的与其他东西绝缘的存在.而人的内心,人的思维目前确实是独立于其他四维的空间.所以他应该是…
R语言因子 因子是它们用于将数据进行分类并将其存储为级别的数据对象.它们可以同时存储字符串和整数.它们在具有唯一值的有限数目的列是有用的. 例如,"male, "Female" 和 True, False 等. 它们在统计建模的数据分析非常有用. 使用 factor() 函数通过采取向量作为输入来创建因子. 示例 # Create a vector as input. data <- c("East","West","E…
1.变量变换        as.array(x),as.data.frame(x),as.numeric(x),as.logical(x),as.complex(x),as.character(x),...转换变量类型:使用如下命令可得到全部列表,methods(as)        factor():将一个向量转化为一个因子2.变量信息        is.na(x),is.null(x),is.array(x),is.data.frame(x),is.numeric(x),is.compl…