mean shift算法是一种强大的无参数离散数据点的聚类方法,其在图像平滑.图像分割以及目标跟踪等方面都有着广泛的应用.[Yamauchi et al. 2005]基于mean shift算法提出了一种网格分割方法,具体来说,给定一个三角网格,其面片重心和面片法向可以组成6维特征空间中的一系列离散点集,然后使用mean shift算法对其进行聚类,聚类后每个面片的法向可以修正为各自聚类中心的法向信息,最后基于面片修正法向进行网格分割.下面具体介绍该算法的过程. 给定一个由面片{Ti}所组成的三…
谱聚类(Spectral Clustering)是一种广泛使用的数据聚类算法,[Liu et al. 2004]基于谱聚类算法首次提出了一种三维网格分割方法.该方法首先构建一个相似矩阵用于记录网格上相邻面片之间的差异性,然后计算相似矩阵的前k个特征向量,这些特征向量将网格面片映射到k维谱空间的单位球上,最后使用K-means方法对谱空间中的数据点进行聚类.具体算法过程如下: 一.相似矩阵 网格分割以面片为基本单元,为了能使算法沿着几何模型的凹形区域进行分割,网格相邻面片之间的距离采用[Katz…
基于Matlab的标记分水岭分割算法 http://blog.sina.com.cn/s/blog_725866260100rz7x.html 1 综述 Separating touching objects in an image is one of the more difficult image processing operations. The watershed transform is often applied to this problem. The watershed tra…
首先以一维随机游走(1D Random Walks)为例来介绍下随机游走(Random Walks)算法,如下图所示,从某点出发,随机向左右移动,向左和向右的概率相同,都为1/2,并且到达0点或N点则不能移动,那么如何求该点到达目的地N点的概率. 该问题可以描述为如下数学形式: P(0) = 0 P(N) = 1 P(x) = 1/2*P(x - 1) + 1/2*P(x + 1) for x = 1, 2, 3, … , N-1 如果用矩阵形式描述,即: 那么通过求解该线性方程组就可以得到各个…
网格分割算法是三维几何处理算法中的重要算法,具有许多实际应用.[Katz et al. 2003]提出了一种新型的层次化网格分割算法,该算法能够将几何模型沿着凹形区域分割成不同的几何部分,并且可以避免过度分割以及锯齿形分割边界.算法的核心思想是先利用模糊聚类的方法分割几何模型,并保留分割边界附近的模糊区域,然后利用最小割的方法在模糊区域里寻找准确的分割边界.算法主要包含以下4个步骤: 1. 计算网格中所有相邻面片之间的距离: 2. 计算每个面片属于不同分割区域的概率: 3. 迭代调整每个面片的概…
首先以一维随机游走(1D Random Walks)为例来介绍下随机游走(Random Walks)算法,如下图所示,从某点出发,随机向左右移动,向左和向右的概率相同,都为1/2,并且到达0点或N点则不能移动,那么如何求该点到达目的地N点的概率. 该问题可以描述为如下数学形式: P(0) = 0 P(N) = 1 P(x) = 1/2*P(x - 1) + 1/2*P(x + 1) for x = 1, 2, 3, … , N-1 如果用矩阵形式描述,即: 那么通过求解该线性方程组就可以得到各个…
转自:http://blog.sina.com.cn/lyqmath 1 综述 Separating touching objects in an image is one of the more difficult image processing operations. The watershed transform is often applied to this problem. The watershed transform finds "catchment basins"(…
写在前面:一篇魏云超博士的综述论文,完整题目为<基于DCNN的图像语义分割综述>,在这里选择性摘抄和理解,以加深自己印象,同时达到对近年来图像语义分割历史学习和了解的目的,博古才能通今!感兴趣的请根据自己情况找来完整文章阅读学习. 图像的语义分割是计算机视觉中重要的基本问题之一,其目标是对图像的每个像素点进行分类,将图像分割为若干个视觉上有意义的或感兴趣的区域,以利于后续的图像分析和视觉理解.近年来,深度卷积神经网络(Deep Convolutional Neural Network, DCN…
  通俗理解Meanshift均值漂移算法  Meanshift车手?? 漂移?? 秋名山???   不,不,他是一组算法,  今天我就带大家来了解一下机器学习中的Meanshift均值漂移. Meanshift算法他的本质是一个迭代的过程 , 我先给大家讲一下他的底层原理     1)概述 Mean-shift(均值迁移)的基本思想:在数据集中选定一个点,然后以这个点为圆心,r为半径,画一个圆(二维下是圆),求出这个点到所有点的向量的平均值,而圆心与向量均值的和为新的圆心,然后迭代此过程,直到…
一些小概念 1.反投影直方图的结果是一个概率映射,体现了已知图像内容出如今图像中特定位置的概率. 2.概率映射能够找到最初的位置,从最初的位置開始而且迭代移动,便能够找到精确的位置,这就是均值漂移算法做的事情. 3.均值漂移算法是以迭代的方式锁定函数的局部最大值的. 关于均值漂移算法的过程(opencv) 事实上均值漂移算法就是寻找提前定义寻找区域中数据点的重心,或者说加权平均值.将寻找区域中心移动到数据点的重心处,并反复这个过程直到寻找区域重心收敛到一个稳定点. OpenCV中定义了两种终止条…