首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
09 Linear Regression
】的更多相关文章
09 Linear Regression
线性回归假设 错误衡量/代价函数---均方误差 最小化样本内代价函数 只有满秩方阵才有逆矩阵 线性回归算法 线性回归算法是隐式迭代的 线性回归算法泛化可能的保证 线性分类是近似求解,线性回归是解析求解, 线性分类中使用0/1误差,线性回归中使用均方误差, 误差方面,线性分类小于线性回归, 但线性回归速度更快, 可以用线性回归的参数结果初始化线性分类参数值,减少迭代过程,加速求解.…
机器学习基石:09 Linear Regression
线性回归假设: 代价函数------均方误差: 最小化样本内代价函数: 只有满秩方阵才有逆矩阵. 线性回归算法流程: 线性回归算法是隐式迭代的. 线性回归算法泛化可能的保证: 根据矩阵的迹的性质:trace(A+B)=trace(A)+trace(B), trace(I-H) =trace(IN*N)-trace(H) =N-trace(XX+) =N-trace(XTX(XTX)-1) =N-trace(I(d+1)*(d+1)) =N-(d+1), I-H这种转换的物理意义: 原来有一个有N…
机器学习基石笔记:09 Linear Regression
线性回归假设: 代价函数------均方误差: 最小化样本内代价函数: 只有满秩方阵才有逆矩阵. 线性回归算法流程: 线性回归算法是隐式迭代的. 线性回归算法泛化可能的保证: 根据矩阵的迹的性质:trace(A+B)=trace(A)+trace(B), trace(I-H) =trace(IN*N)-trace(H) =N-trace(XX+) =N-trace(XTX(XTX)-1) =N-trace(I(d+1)*(d+1)) =N-(d+1), I-H这种转换的物理意义: 原来有一个有N…
Spark2 Linear Regression线性回归
回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多重共线性情况下运行良好. 数学上,ElasticNet被定义为L1和L2正则化项的凸组合: 通过适当设置α,ElasticNet包含L1和L2正则化作为特殊情况.例如,如果用参数α设置为1来训练线性回归模型,则其等价于Lasso模型.另一方面,如果α被设置为0,则训练的模型简化为ridge回归模型. RegParam:lambda>=0ElasticNetParam:alpha in [0, 1] 导入包 im…
从损失函数优化角度:讨论“线性回归(linear regression)”与”线性分类(linear classification)“的联系与区别
1. 主要观点 线性模型是线性回归和线性分类的基础 线性回归和线性分类模型的差异主要在于损失函数形式上,我们可以将其看做是线性模型在多维空间中“不同方向”和“不同位置”的两种表现形式 损失函数是一种优化技术的具体载体,影响损失函数不同形式的因素主要有: 和谁比:和什么目标比较损失 怎么比:损失比较的具体度量方式和量纲是什么 比之后如何修正参数:如果将损失以一种适当的形式反馈给原线性模型上,以修正线性模式参数 在这篇文章中,笔者会先分别介绍线性回归(linear regression)和线性分类(…
贝叶斯线性回归(Bayesian Linear Regression)
贝叶斯线性回归(Bayesian Linear Regression) 2016年06月21日 09:50:40 Duanxx 阅读数 54254更多 分类专栏: 监督学习 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/daunxx/article/details/51725086 贝叶斯线性回归(Bayesian Linear Regression) 标签(空格分隔): 监督学习…
线性回归、梯度下降(Linear Regression、Gradient Descent)
转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 实例 首先举个例子,假设我们有一个二手房交易记录的数据集,已知房屋面积.卧室数量和房屋的交易价格,如下表: 假如有一个房子要卖,我们希望通过上表中的数据估算这个房子的价格.这个问题就是典型的回归问题,这边文章主要讲回归中的线性回归问题. 线性回归(Linear Regression) 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值.假设特征和结果满足线性关系,即满足一个…
局部加权回归、欠拟合、过拟合(Locally Weighted Linear Regression、Underfitting、Overfitting)
欠拟合.过拟合 如下图中三个拟合模型.第一个是一个线性模型,对训练数据拟合不够好,损失函数取值较大.如图中第二个模型,如果我们在线性模型上加一个新特征项,拟合结果就会好一些.图中第三个是一个包含5阶多项式的模型,对训练数据几乎完美拟合. 模型一没有很好的拟合训练数据,在训练数据以及在测试数据上都存在较大误差,这种情况称之为欠拟合(underfitting). 模型三对训练数据拟合的很不错,但是在测试数据上的准确度并不理想.这种对训练数据拟合较好,而在测试数据上准确度较低的情况称之为过拟合(ove…
Multivariance Linear Regression练习
%% 方法一:梯度下降法 x = load('E:\workstation\data\ex3x.dat'); y = load('E:\workstation\data\ex3y.dat'); x = [ones(size(x,1),1) x]; meanx = mean(x);%求均值 sigmax = std(x);%求标准偏差 x(:,2) = (x(:,2)-meanx(2))./sigmax(2); x(:,3) = (x(:,3)-meanx(3))./sigmax(3); figu…
Kernel Methods (3) Kernel Linear Regression
Linear Regression 线性回归应该算得上是最简单的一种机器学习算法了吧. 它的问题定义为: 给定训练数据集\(D\), 由\(m\)个二元组\(x_i, y_i\)组成, 其中: \(x_i\)是\(n\)维列向量 \(y_i\)的值服从正态分布\(N(f(x_i), \sigma_i^2)\), \(f(x_i)\)是关于\(x_i\)的线性函数: \(f(x_i) = w^Tx_i + b\). 为方便起见, 令\(x_i \gets [x_{i0} = 1, x_{i1},…