Word2Vec在中文的应用】的更多相关文章

词向量作为文本的基本结构——词的模型,以其优越的性能,受到自然语言处理领域研究人员的青睐.良好的词向量可以达到语义相近的词在词向量空间里聚集在一起,这对后续的文本分类,文本聚类等等操作提供了便利,本文将详细介绍如何使用word2vec构建中文词向量. 一.中文语料库 本文采用的是搜狗实验室的搜狗新闻语料库,数据链接 http://www.sogou.com/labs/resource/cs.php 下载下来的文件名为: news_sohusite_xml.full.tar.gz 二.数据预处理…
https://www.jianshu.com/p/87798bccee48 一.文本处理流程 通常我们文本处理流程如下: 1 对文本数据进行预处理:数据预处理,包括简繁体转换,去除xml符号,将单词条内容处理成单行数据,word2vec训练原理是基于词共现来训练词之间的语义联系的.不同词条内容需分开训练 2 中文分词:中文NLP很重要的一步就是分词了,分词的好坏很大程度影响到后续的模型训练效果 3 特征处理:也叫词向量编码,将文本数据转换成计算机能识别的数据,便于计算,通常是转换成数值型数据,…
--  这篇文章是一个学习.分析的博客 --- 1.准备数据与预处理 首先需要一份比较大的中文语料数据,可以考虑中文的维基百科(也可以试试搜狗的新闻语料库).中文维基百科的打包文件地址为 https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2 中文维基百科的数据不是太大,xml的压缩文件大约1G左右.首先用 process_wiki_data.py处理这个XML压缩文件,执行:python pr…
在上一篇对中文维基百科语料处理将其转换成.txt的文本文档的基础上,我们要将为文本转换成向量,首先都要对文本进行预处理 步骤四:由于得到的中文维基百科中有许多繁体字,所以我们现在就是将繁体字转换成简体字 opencc工具进行繁简转换,首先去下载opencc:https://bintray.com/package/files/byvoid/opencc/OpenCC 下载完成之后解压即可,随后使用命令: opencc -i wiki.zh.text -o wiki.zh.jian.text -c…
一.下载中文维基百科数据https://dumps.wikimedia.org/zhwiki/并使用gensim中的wikicorpus解析提取xml中的内容 二.利用opencc繁体转简体 三.利用jieba对转换后的文本进行分词,去停词 四.利用gensim中的word2vec训练分词后的文本 五.测试 python代码如下: #!/user/bin/python #coding:utf-8 __author__ = 'yan.shi' from gensim.corpora import…
google最近新开放出word2vec项目,该项目使用deep-learning技术将term表示为向量,由此计算term之间的相似度,对term聚类等,该项目也支持phrase的自动识别,以及与term等同的计算. word2vec(word to vector)顾名思义,这是一个将单词转换成向量形式的工具.通过转换,可以把对文本内容的处理简化为向量空间中的向量运算,计算出向量空间上的相似度,来表示文本语义上的相似度. 具体的原理还没有去了解,在这里谈一下怎么个应用法 分词 1)  本人下载…
对前两篇获取到的词向量模型进行使用: 代码如下: import gensim model = gensim.models.Word2Vec.load('wiki.zh.text.model') flag=1 while(flag): word = input("Please input the key_word:\n") if word in model: print(model['word']) # 词相似度 result = model.most_similar(word) for…
在进行自然语言处理之前,首先需要一个语料,这里选择维基百科中文语料,由于维基百科是 .xml.bz2文件,所以要将其转换成.txt文件,下面就是相关步骤: 步骤一:下载维基百科中文语料 https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2 然后解压文件 文件夹里是一个这个文件 步骤二:安装依赖库 我们需要安装一些依赖库,有numpy.scipy以及gensim,安装gensim依赖于scipy…
google最近新开放出word2vec项目,该项目使用deep-learning技术将term表示为向量,由此计算term之间的相似度,对term聚类等,该项目也支持phrase的自动识别,以及与term等同的计算. word2vec项目首页:https://code.google.com/p/word2vec/,文档比较详尽,很容易上手.可能对于不同的系统和gcc版本,需要稍微改一下代码和makefile.具体到我的mac系统,源代码中所有#include <malloc.h>的地方都需要…
本文是讲述怎样使用word2vec的基础教程.文章比較基础,希望对你有所帮助! 官网C语言下载地址:http://word2vec.googlecode.com/svn/trunk/ 官网Python下载地址:http://radimrehurek.com/gensim/models/word2vec.html 1.简介 參考:<Word2vec的核心架构及其应用 · 熊富林.邓怡豪,唐晓晟 · 北邮2015年>           <Word2vec的工作原理及应用探究 · 周练 ·…
用中文把玩Google开源的Deep-Learning项目word2vec   google最近新开放出word2vec项目,该项目使用deep-learning技术将term表示为向量,由此计算term之间的相似度,对term聚类等,该项目也支持phrase的自动识别,以及与term等同的计算. word2vec项目首页:https://code.google.com/p/word2vec/,文档比较详尽,很容易上手.可能对于不同的系统和gcc版本,需要稍微改一下代码和makefile.具体到…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:2013年末,Google发布的 word2vec工具引起了一帮人的热捧,大家几乎都认为它是深度学习在自然语言领域的一项了不起的应用,各种欢呼"深度学习在自然语言领域开始发力 了". 基于word2vec现在还出现了doc2vec,word2vec相比传统,考虑单词上下文的语义:但是doc2vec不仅考虑了单词上下文的语义,…
看了几天word2vec的理论,终于是懂了一些.理论部分我推荐以下几篇教程,有博客也有视频: 1.<word2vec中的数学原理>:http://www.cnblogs.com/peghoty/p/3857839.html 2.刘建平:word2vec原理:https://www.cnblogs.com/pinard/p/7160330.html 3.吴恩达:<序列模型:自然语言处理与词嵌入> 理论看完了就要实战了,通过实战能加深对word2vec的理解.目前用word2vec算法…
1. NLP 走近自然语言处理 概念 Natural Language Processing/Understanding,自然语言处理/理解 日常对话.办公写作.上网浏览 希望机器能像人一样去理解,以人类自然语言为载体的文本所包含的信息,并完成一些特定任务 内容中文分词.词性标注.命名实体识别.关系抽取.关键词提取.信息抽取.依存分析.词嵌入…… 应用篇章理解.文本摘要.情感分析.知识图谱.文本翻译.问答系统.聊天机器人…… 2. NLP 使用jieba分词处理文本,中文分词,关键词提取,词性标…
word2vec官网:https://code.google.com/p/word2vec/ 利用中文数据跑Google开源项目word2vec:http://www.cnblogs.com/hebin/p/3507609.html word2vec使用指导:http://blog.csdn.net/zhoubl668/article/details/24314769 文本深度表示模型Word2Vec:http://liweithu.me/word2vec/ 杨阳 word2vec使用指导:ht…
目录 词向量简介 1. 基于one-hot编码的词向量方法 2. 统计语言模型 3. 从分布式表征到SVD分解 3.1 分布式表征(Distribution) 3.2 奇异值分解(SVD) 3.3 基于SVD的词向量方法 4. 神经网络语言模型(Neural Network Language Model) 5. Word2Vec 5.1 两个模型 5.2 两个提速手段 5.3一些预处理细节 5.4 word2vec的局限性 6. GloVe 6.1 统计共现矩阵 6.2 Glove的由来 6.3…
论文:Chinese NER Using Lattice LSTM 论文链接:https://arxiv.org/abs/1805.02023 论文作者:Yue Zhang∗and Jie Yang∗ 项目链接:https://github.com/jiesutd/LatticeLSTM 论文翻译:转自机器之心    https://www.jiqizhixin.com/articles/ACL2018-Chinese-NER-Using-Lattice-LSTM 一.摘要 该篇论文是基于字符的…
本文转载自:https://www.jianshu.com/p/1a4f7f5b05ae 致谢以及参考 最近在做序列化标注项目,试着理解rnn的设计结构以及tensorflow中的具体实现方法.在知乎中找到这篇文章,具有很大的帮助作用,感谢作者为分享知识做出的努力. 学习目标定位 我主要重点在于理解文中连接所提供的在github上的project代码,一句句理解数据的预处理过程以及rnn网络搭建过程(重点在于代码注释,代码改动很小,实用python3).(进入下面环节之前,假设你已经阅读了知乎上…
一直听说word2vec在处理词与词的相似度的问题上效果十分好,最近自己也上手跑了跑Google开源的代码(https://code.google.com/p/word2vec/). 1.语料 首先准备数据:采用网上博客上推荐的全网新闻数据(SogouCA),大小为2.1G. 从ftp上下载数据包SogouCA.tar.gz: wget ftp://ftp.labs.sogou.com/Data/SogouCA/SogouCA.tar.gz --ftp-user=hebin_hit@foxmai…
一.利用wiki中文语料进行word2vec模型构建 1)数据获取 到wiki官网下载中文语料,下载完成后会得到命名为zhwiki-latest-pages-articles.xml.bz2的文件,里面是一个XML文件 下载地址如下:https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2 其中:https://dumps.wikimedia.org/zhwiki/latest/提供wiki各种文…
最近在工作之余学习NLP相关的知识,对word2vec的原理进行了研究.在本篇文章中,尝试使用TensorFlow自行构建.训练出一个word2vec模型,以强化学习效果,加深理解. 一.背景知识: 在深度学习实践中,传统的词汇表达方式是使用one-hot向量,其中,向量的维度等于词汇量的大小.这会导致在语料较为丰富,词汇量较大的时候,向量的维度过长,进而产生一个相当大的稀疏矩阵,占用不少内存开销,降低机器运行速度.而word2vec则为这个问题提供了一种解决方案. word2vec是一个用来产…
影视剧字幕聊天语料库特点,把影视剧说话内容一句一句以回车换行罗列三千多万条中国话,相邻第二句很可能是第一句最好回答.一个问句有很多种回答,可以根据相关程度以及历史聊天记录所有回答排序,找到最优,是一个搜索排序过程. lucene+ik.lucene开源免费搜索引擎库,java语言开发.ik IKAnalyzer,开源中文切词工具.语料库切词建索引,文本搜索做文本相关性检索,把下一句取出作答案候选集,答案排序,问题分析. 建索引.eclipse创建maven工程,maven自动生成pom.xml文…
word2vec相关基础知识.下载安装參考前文:word2vec词向量中文文本相似度计算 文件夹: word2vec使用说明及源代码介绍 1.下载地址 2.中文语料 3.參数介绍 4.计算相似词语 5.三个词预測语义语法关系 6.关键词聚类 1.下载地址 官网C语言下载地址:http://word2vec.googlecode.com/svn/trunk/ 执行 make 编译word2vec工具: Makefile的编译代码在makefile.txt文件里,先改名makefile.txt 为M…
环境: win7+python3.5 1. 下载wiki中文分词语料   使用迅雷下载会快不少,大小为1个多G      https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2  2. 安装opencc用于中文的简繁替换    安装exe的版本   到https://bintray.com/package/files/byvoid/opencc/OpenCC 中下载 opencc-1.0.1-w…
word2vec介绍 word2vec官网:https://code.google.com/p/word2vec/ word2vec是google的一个开源工具,能够根据输入的词的集合计算出词与词之间的距离. 它将term转换成向量形式,可以把对文本内容的处理简化为向量空间中的向量运算,计算出向量空间上的相似度,来表示文本语义上的相似度. word2vec计算的是余弦值,距离范围为0-1之间,值越大代表两个词关联度越高. 词向量:用Distributed Representation表示词,通常…
最近针对之前发表的一篇博文<Deep Learning 在中文分词和词性标注任务中的应用>中的算法做了一个实现,感觉效果还不错.本文主要是将我在程序实现过程中的一些数学细节整理出来,借此优化一下自己的代码,也希望为对此感兴趣的朋友提供点参考.文中重点介绍训练算法中的模型参数计算,以及 Viterbi 解码算法. 相关链接: <Deep Learning 在中文分词和词性标注任务中的应用> <Deep Learning for Chinese Word Segmentation…
word2vec word2vec/glove/swivel binary file on chinese corpus word2vec: https://code.google.com/p/word2vec/ glove: http://nlp.stanford.edu/projects/glove/ swivel: https://github.com/tensorflow/models/tree/master/swivel http://arxiv.org/abs/1602.02215…
http://blog.csdn.net/gnehcuoz/article/details/52136371…
服务器上python2.7 打印出的e[0]对应的是 unicode码 于是分别尝试了用e[0].encode('utf-8')转码 和 e[0].decode('unicode-escape')依然是unicode码. 后来,想起很久之前用gensim跑琅琊榜的词向量时没有这个问题,翻出代码看了一下,原来是print语句的写法有问题. 教训:编程语言版本不要随便换,不得不换后要记得语言版本也是debug的一个方向.…
word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了很多人的关注.由于 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,因而在一定程度上增加了这个工具包的神秘感.一些按捺不住的人于是选择了通过解剖源代码的方式来一窥究竟. 第一次接触 word2vec 是 2013 年的 10 月份,当时读了复旦大学郑骁庆老师发表的论文[7],其主要工作是将 SENNA…