【模板】MST(Kruskal)】的更多相关文章

You may refer to the main idea of MST in graph theory. http://en.wikipedia.org/wiki/Minimum_spanning_tree Here is my own interpretation What is Minimum Spanning Tree? Given a connected and undirected graph, a spanning tree of that graph is a subgraph…
CDOJ 1966 Kruskal 解法 时间复杂度O(mlogm) m为边数,这里主要是边排序占时间,后面并查集还好 #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; typedef long long LL; ; ; ,num=; LL ans=; int f[N]; struct Node { int u,…
int n, m; struct Edge { int u, v, w; }a[MAX_M]; // 令a关于w升序排列 int r[MAX_N]; // 并查集 int Find(int x) { if(r[x] ^ x) return r[x] = Find(r[x]); return x; } int MST; void Kruskal() { ; i <= n; ++i) r[i] = i; ; i <= m; ++i) { if(Find(a[i].u) ^ Find(a[i].v)…
The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 27141   Accepted: 9712 Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition 1 (Spanning Tree): Consider a connected, undire…
题目:http://noi.ac/problem/31 好题啊! 题意很明白,对于有关最小生成树(MST)的题,一般是要模拟 Kruskal 过程了: 模拟 Kruskal,也就是把给出的 n-1 条边一条一条加进去,那么就要枚举每次连接了哪两个连通块(点集): 于是需要记录连通块情况,这样加一条边就相当于一种情况到另一种情况的转移,就可以DP: 记录连通块情况较为复杂,而且还要注意不重复等等... 但实际上,我们在转移时,并不需要知道连通块中有哪些点,只要知道连通块的大小即可(从n个1开始转移…
算法简介 Kruskal算法可用来求解MST(最小生成树)问题,还可以作为迷宫生成算法等. 算法分析 其实算法不难理解,算法先要将 $ G(V, E) $ 的集合 $ E $ 按权重 $ \Omega $ 由小到大排序,然后还利用了不相交集中的`find()`(这里使用的是带路径压缩功能的) 和`union()`(这里函数名使用`marge()`) 函数,`find()`用于判断是否连通,如果连通则不能构成MST,反之则加入到MST的集合中,并调用`union()`函数将顶点连通. 时间复杂度 …
Kruskal模板:按照边权排序,开始从最小边生成树 #include<algorithm> #include<stdio.h> #include<string.h> #include<iostream> #define N 1000+5//n 个顶点,m条边 using namespace std; //最小生成树模板(计算最小生成树的sum) struct node { int u,v,len;//u->v距离len }q[N]; int f[N]…
这题可以用次小生成树解,这里用Kruskal算法来做.每条边除维护u,v,w外,还维护: used:表示这条边是否加过 eq:表示有没有与这条边相等的边 del:删除标记,以便删边之用 如果对于一个最小生成树的的边A,有一条与之权值相等的边B,则考虑把A删掉,再求一次最小生成树,看求出的总权值是否与前一个最小生成树的总权值相等.如果相等,则不唯一,如果找遍了这些权值相等的边都没找到,就说明唯一(注意每次不相等的话要把A重新加进来). 代码: #include <iostream> #inclu…
并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每个点只保存祖先,不保存父亲) 最小生成树kruskal:贪心算法+并查集数据结构,根据边的多少决定时间复杂度,适合于稀疏图 核心思想贪心,找到最小权值的边,判断此边连接的两个顶点是否已连接,若没连接则连接,总权值+=此边权值,已连接就舍弃继续向下寻找: 并查集数据结构程序: #include<ios…
本文链接:http://www.cnblogs.com/Ash-ly/p/5409265.html 引导问题: 假设要在N个城市之间建立通信联络网,则连通N个城市只需要N - 1条线路.这时,自然会考虑这样一个问题,如何在最省经费的前提下建立这个通信网. 基于问题所建立的定义: 可以用联通网来表示N个城市以及N个城市之间可能设置的连通线路,其中网的顶点表示城市,边表示两城市之间的线路,赋予边的权值表示相应的代价.对于N个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网.现在,…