tensorflow学习总结之reduce_sum函数】的更多相关文章

tensorflow里面集成了许多基于统计的数学函数,类似于reduce_sum,reduce_mean,reduce_min,reduce_max,等,根据字面意思分别是求和,求平均,求最大,求最小等 reduce_sum() 就是求和,由于求和的对象是tensor,所以是沿着tensor的某些维度求和.reduction_indices是指沿tensor的哪些维度求和,下面以一个例子形容维度求和的具体操作: 下面是个2*3*4的tensor. [[[ 1 2 3 4] [ 5 6 7 8]…
https://blog.csdn.net/chengshuhao1991/article/details/78545723 在计算损失时,通常会用到reduce_sum()函数来进行求和,但是在使用过程中常常会搞不清楚具体是怎样进行计算的,通过查阅资料,逐渐搞清楚了这个函数的用法,下面就来详细解释一下. 在TensorFlow官方文档中有这样的解释:这里写图片描述 其实在reduce_sum()中,是从维度上去考虑的.其中的参数reduction_indices很容易搞蒙圈,上个图加深理解吧.…
tensorflow 当中的一个常用函数:Slice() def slice(input_, begin, size, name=None) 函数的功能是根据begin和size指定获取input的部分数据. 其中input是输入可以是列表,元祖等,begin 是起始地址,size是范围大小 如果是input的一维的,begin和size相应的也要是一维的. 比如: input=[1,2,3,4,5,6]  begin=[1] size=[3]  则对应的结果为[2,3,4] input=[[1…
在贝叶斯个性化排序(BPR)算法小结中,我们对贝叶斯个性化排序(Bayesian Personalized Ranking, 以下简称BPR)的原理做了讨论,本文我们将从实践的角度来使用BPR做一个简单的推荐.由于现有主流开源类库都没有BPR,同时它又比较简单,因此用tensorflow自己实现一个简单的BPR的算法,下面我们开始吧. 1. BPR算法回顾 BPR算法是基于矩阵分解的排序算法,它的算法训练集是一个个的三元组$<u,i,j>$,表示对用户u来说,商品i的优先级要高于商品j.训练成…
tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S1就是S2的一个超集,反过来,S2是S1的子集. 张量形状: 固定长度: [],() 0阶次:[3],(2,3) 1/2阶次 不定长度:[None] 表示任意长度的向量,(None,3) 表示行数任意,3列的矩阵 获取Op:tf.shape(tensor, name="tensor_shape&qu…
维基百科对深度学习的精确定义为“一类通过多层非线性变换对高复杂性数据建模算法的合集”.因为深层神经网络是实现“多层非线性变换”最常用的一种方法,所以在实际中可以认为深度学习就是深度神经网络的代名词.从维基百科给出的定义可以看出,深度学习有两个非常重要的特性——多层和非线性.那么为什么要强调这两个性质呢?下面我们开始学习. 1,线性模型的局限性 在线性模型中,模型的输出为输入的加权和.假设一个模型的输出 y  和输入 xi 满足以下关系,那么这个模型就是一个线性模型: 其中,wi , b € R…
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例代码: import tensorflow as tf l1 = tf.matmul(x, w1) l2 = tf.matmul(l1, w2) y = tf.matmul(l2,w3) 1.2,激活层:引入激活函数,让每一层去线性化 激活函数有多种,例如常用的 tf.nn.relu  tf.nn.…
1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这些领域有非常深入的理解,并且使用专业算法提取这些数据的特征.深度学习则可以解决人工难以提取有效特征的问题,它可以大大缓解机器学习模型对特征工程的依赖.深度学习在早期一度被认为是一种无监督的特征学习(Unsuperbised Feature Learning),模仿了人脑的对特征逐层抽象提取的过程.这…
在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练.而这篇文章是想自己完成LeNet网络来训练自己的数据集.LeNet主要用来进行手写字符的识别与分类,下面记录一下自己学习的过程. 我的学习步骤分为以下四步: 1,温习LeNet-5的网络层 2,使用LeNet-5训练MNIST数据集 3,使用LeNet-5训练TFRecord格式的MNIST数据集…
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有Hello World,机器学习入门有MNIST.在此节,我将训练一个机器学习模型用于预测图片里面的数字. 开始先普及一下基础知识,我们所说的图片是通过像素来定义的,即每个像素点的颜色不同,其对应的颜色值不同,例如黑白图片的颜色值为0到255,手写体字符,白色的地方为0,黑色为1,如下图. MNIST…