caffe 训练imagenet】的更多相关文章

1.整理得到自己的数据库,并生成自己数据库的列表文件.txt 2.将数据库转成lmbp格式 3.计算图像均值 4.修改网络参数 5.得到结果 1.整理得到自己的数据库 因为前面博文提到的原因,技术水平有限没办法实现主机和虚拟机之间的文件共享,就暂时先用比较麻烦的方法.现在主机上整理好需要的数据集 一共四个文件:两个图像库文件夹----测试.校正 :两个图像库列表文件----测试.校 测试图像库文件夹中根据自己的分类类别在进行分类,比如我是用的两个类别,所以在测试图像库文件夹中还有两个文件夹:分别…
一.深度学习中常用的调节参数 本节为笔者上课笔记(CDA深度学习实战课程第一期) 1.学习率 步长的选择:你走的距离长短,越短当然不会错过,但是耗时间.步长的选择比较麻烦.步长越小,越容易得到局部最优化(到了比较大的山谷,就出不去了),而大了会全局最优 一般来说,前1000步,很大,0.1:到了后面,迭代次数增高,下降0.01,再多,然后再小一些. 2.权重 梯度消失的情况,就是当数值接近于正向∞,求导之后就更小的,约等于0,偏导为0 梯度爆炸,数值无限大 对于梯度消失现象:激活函数 Sigmo…
个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231n.stanford.edu/syllabus.html Ubuntu安装caffe教程参考:http://caffe.berkeleyvision.org/install_apt.html 先讲解一下caffe设计的架构吧: 训练mnist数据集使用 build/tools/caffe 训练步骤:…
三:使用Caffe训练Caffemodel并进行图像分类 上一篇记录的是如何使用别人训练好的MNIST数据做训练测试.上手操作一边后大致了解了配置文件属性.这一篇记录如何使用自己准备的图片素材做图像分类.第一篇<实践详细篇-Windows下使用VS2015编译安装Caffe环境(CPU ONLY) >有讲过使用Caffe的背景.所以这篇记录使用的素材就是12306的验证码来进行图像识别分类. 1.准备素材 由于这里抓取到的验证码是整合后的大图.就是8张小图片合成的.由于12306的验证码大图并…
当我们使用Caffe训练AlexNet网络时,会遇到精度一值在低精度(30%左右)升不上去,或者精度总是为0,如下图所示: 出现这种情况,可以尝试使用以下几个方法解决: 1.数据样本量是否太少,最起码要千张图片样本. 2.在制作训练样本标签时,是否打乱样本顺序,这样在训练时每取batch_size个样本就可以训练多个类别,以防止时出现常出现0精度或1精度的情况. 3.文件solver.prototxt和文件train_val.prototxt的配置问题,一般调节solver文件中的学习率base…
caffe训练自己的图片进行分类预测 标签: caffe预测 2017-03-08 21:17 273人阅读 评论(0) 收藏 举报  分类: caffe之旅(4)  版权声明:本文为博主原创文章,未经博主允许不得转载. 搭建好caffe环境后,就需要用自己的图片进行分类预测,主要步骤如下,主要参照http://www.cnblogs.com/denny402/p/5083300.html,感谢博主: 1.数据准备,下载待训练的图片集,共5类400张,测试集100张,目录分别为data\re\t…
Tags: Caffe Categories: Tools/Wheels --- 1. 将caffe训练时将屏幕输出定向到文本文件 caffe中自带可以画图的工具,在caffe路径下: ./tools/extra/parse_log.sh ./tools/extra/extract_seconds.py ./tools/extra/plot_training_log.py.example 日志重定向:在训练命令中加入一行参数,实现log日志定向到文件: caffe train --sover=/…
caffe 进行自己的imageNet训练分类:loss一直是87.3365,accuracy一直是0 解决方法: http://blog.csdn.net/jkfdqjjy/article/details/52268565?locationNum=14 知道了原因,解决时就能对症下药.总体上看,softmax输入的feature由两部分计算得到:一部分是输入数据,另部分是各层权重参数. 1.观察数据中是否有异常样本或异常label导致数据读取异常2.调小初始化权重,以便使softmax输入的f…
参考博客:blog.csdn.net/drrlalala/article/details/47274549 1,首先在网上下载图片,猫和狗.直接保存下载该网页,会生成一个有图片的文件夹.caffe-master/data  新建 myselfmyself/  新建  train   dog                                cat                       test   dog                                cat之后…
默认caffe已经编译好了,并且编译好了pycaffe 1 数据准备 首先准备训练和测试数据集,这里准备两类数据,分别放在文件夹0和文件夹1中(之所以使用0和1命名数据类别,是因为方便标注数据类别,直接用文件夹的名字即可).即训练数据集:/data/train/0./data/train/1  训练数据集:/data/val/0./data/val/1. 数据准备好之后,创建记录数据文件和对应标签的txt文件 (1)创建训练数据集的train.txt import os f =open(r'tr…