Miller-rabin算法是一个用来快速判断一个正整数是否为素数的算法.它利用了费马小定理,即:如果p是质数,且a,p互质,那么a^(p-1) mod p恒等于1.也就是对于所有小于p的正整数a来说都应该复合a^(p-1) mod p恒等于1.那么根据逆否命题,对于一个p,我们只要举出一个a(a<p)不符合这个恒等式,则可判定p不是素数.Miller-rabin算法就是多次用不同的a来尝试p是否为素数. 但是每次尝试过程中还做了一个优化操作,以提高用少量的a检测出p不是素数的概率.这个优化叫做…
Sieve of Eratosthenes (素数筛选算法) Given a number n, print all primes smaller than or equal to n. It is also given that n is a small number. For example, if n is 10, the output should be “2, 3, 5, 7″. If n is 20, the output should be “2, 3, 5, 7, 11, 13,…