spark的shuffle机制】的更多相关文章

MapReduce中的Shuffle 在MapReduce框架中,shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性能高低直接影响了整个程序的性能和吞吐量. Shuffle是MapReduce框架中的一个特定的phase,介于Map phase和Reduce phase之间,当Map的输出结果要被Reduce使用时.输出结果须要按key哈希.而且分发到每个Reducer上去.这个过程就是shuffle.因为shu…
一.前述 Spark中Shuffle的机制可以分为HashShuffle,SortShuffle. SparkShuffle概念 reduceByKey会将上一个RDD中的每一个key对应的所有value聚合成一个value,然后生成一个新的RDD,元素类型是<key,value>对的形式,这样每一个key对应一个聚合起来的value. 问题:聚合之前,每一个key对应的value不一定都是在一个partition中,也不太可能在同一个节点上,因为RDD是分布式的弹性的数据集,RDD的part…
对于大数据计算框架而言,Shuffle阶段的设计优劣是决定性能好坏的关键因素之一.本文将介绍目前Spark的shuffle实现,并将之与MapReduce进行简单对比.本文的介绍顺序是:shuffle基本概念,MapReduce Shuffle发展史以及Spark Shuffle发展史. (1)  shuffle基本概念与常见实现方式 shuffle,是一个算子,表达的是多对多的依赖关系,在类MapReduce计算框架中,是连接Map阶段和Reduce阶段的纽带,即每个Reduce Task从每…
研究一下Spark Hash Shuffle 和 SortShuffle 原理机制研究一下Spark Hash Shuffle 和 SortShuffle 原理机制研究一下Spark Hash Shuffle 和 SortShuffle 原理机制研究一下Spark Hash Shuffle 和 SortShuffle 原理机制研究一下Spark Hash Shuffle 和 SortShuffle 原理机制…
Shuffle过程主要分为Shuffle write和Shuffle read两个阶段,2.0版本之后hash shuffle被删除,只保留sort shuffle,下面结合代码分析: 1.ShuffleManager Spark在初始化SparkEnv的时候,会在create()方法里面初始化ShuffleManager // Let the user specify short names for shuffle managers val shortShuffleMgrNames = Map…
本期内容: 1. Spark Streaming Job架构与运行机制 2. Spark Streaming 容错架构与运行机制 事实上时间是不存在的,是由人的感官系统感觉时间的存在而已,是一种虚幻的存在,任何时候宇宙中的事情一直在发生着的. Spark Streaming好比时间,一直遵循其运行机制和架构在不停的在运行,无论你写多或者少的应用程序都跳不出这个范围. import org.apache.spark.SparkConf import org.apache.spark.streami…
一.前述 Spark中Shuffle文件的寻址是一个文件底层的管理机制,所以还是有必要了解一下的. 二.架构图 三.基本概念: 1) MapOutputTracker MapOutputTracker是Spark架构中的一个模块,是一个主从架构.管理磁盘小文件的地址. MapOutputTrackerMaster是主对象,存在于Driver中. MapOutputTrackerWorker是从对象,存在于Excutor中. 2) BlockManager BlockManager块管理者,是Sp…
Spark内部执行机制 1.1 内部执行流程 如下图1为分布式集群上spark应用程序的一般执行框架.主要由sparkcontext(spark上下文).cluster manager(资源管理器)和▪executor(单个节点的执行进程).其中cluster manager负责整个集群的统一资源管理.executor是应用执行的主要进程,内部含有多个task线程以及内存空间.   图1 spark分布式部署图 详细流程图如下图2:     图2 详细流程图 (1) 应用程序在使用spark-s…
Spark内存管理机制 Spark 作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色.理解 Spark 内存管理的基本原理,有助于更好地开发 Spark 应用程序和进行性能调优. 在执行 Spark 的应用程序时,Spark 集群会启动 Driver 和 Executor 两种 JVM 进程,前者为主控进程,负责创建 Spark 上下文,提交 Spark 作业(Job),并将作业转化为计算任务(Task),在各个 Executor 进程间协调任务的调度,后者负责在…
概述     Shuffle就是对数据进行重组,由于分布式计算的特性和要求,在实现细节上更加繁琐和复杂.    在MapReduce框架,Shuffle是连接Map和Reduce之间的桥梁,Map阶段通过shuffle读取数据并输出到对应的Reduce:而Reduce阶段负责从Map端拉取数据并进行计算.在整个shuffle过程中,往往伴随着大量的磁盘和网络I/O.所以shuffle性能的高低也直接决定了整个程序的性能高低.Spark也会有自己的shuffle实现过程.   spark中的shu…