Tensorflow数据读取的方式】的更多相关文章

转自:https://blog.csdn.net/lujiandong1/article/details/53376802 Tensorflow数据读取有三种方式: Preloaded data: 预加载数据 Feeding: Python产生数据,再把数据喂给后端. Reading from file: 从文件中直接读取 这三种有读取方式有什么区别呢? 我们首先要知道TensorFlow(TF)是怎么样工作的. TF的核心是用C++写的,这样的好处是运行快,缺点是调用不灵活.而Python恰好…
深度学习既然是基于数据的方法,先不管多抽象,那总归是有读取数据的方法的吧,这里的数据应该是一个统称,包含我们讲的数据集和变量tensor. tf读取数据一共有3种方法: 供给数据(Feeding): 创建占位符,让Python代码来供给数据. 从文件读取数据(Reading): tf可以从文件中读取数据,比如前面的Mnist和cifar10都是从文件中读取的数据集. 预加载数据(Preloading): 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况). 供给…
英文详细版参考:https://www.cnblogs.com/jins-note/p/10243716.html Dataset API是TensorFlow 1.3版本中引入的一个新的模块,主要服务于数据读取,构建输入数据的pipeline. 此前,在TensorFlow中读取数据一般有两种方法: 使用placeholder读内存中的数据 使用queue读硬盘中的数据(关于这种方式,可以参考我之前的一篇文章:十图详解tensorflow数据读取机制) 相Dataset API同时支持从内存和…
TensorFlow高效读取数据的方法 TF Boys (TensorFlow Boys ) 养成记(二): TensorFlow 数据读取 Tensorflow从文件读取数据 极客学院-数据读取 十图详解TensorFlow数据读取机制(附代码) http://geek.csdn.net/news/detail/201552 在学习TensorFlow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最…
十图详解tensorflow数据读取机制(附代码) - 何之源的文章 - 知乎 https://zhuanlan.zhihu.com/p/27238630…
TensorFlow 的 How-Tos,讲解了这么几点: 1. 变量:创建,初始化,保存,加载,共享: 2. TensorFlow 的可视化学习,(r0.12版本后,加入了Embedding Visualization) 3. 数据的读取: 4. 线程和队列: 5. 分布式的TensorFlow: 6. 增加新的Ops: 7. 自定义数据读取: 由于各种原因,本人只看了前5个部分,剩下的2个部分还没来得及看,时间紧任务重,所以匆匆发车了,以后如果有用到的地方,再回过头来研究.学习过程中深感官方…
在学习TensorFlow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下TensorFlow的数据读取机制,文章的最后还会给出实战代码以供参考. TensorFlow读取机制图解 首先需要思考的一个问题是,什么是数据读取?以图像数据为例,读取数据的过程可以用下图来表示: 假设我们的硬盘中有一个图片数据集0001.jpg,0002.jpg,0003.jpg--我们只需要把…
展示如何将数据输入到计算图中 Dataset可以看作是相同类型"元素"的有序列表,在实际使用时,单个元素可以是向量.字符串.图片甚至是tuple或dict. 数据集对象实例化: dataset=tf.data.Dataset.from_tensor_slice(<data>) 迭代器对象实例化: iterator=dataset.make_one_shot_iterator() one_element=iterator.get_next() 读取结束异常:如果一个datas…
原文地址: https://zhuanlan.zhihu.com/p/27238630 何之源 ​ 深度学习(Deep Learning) 话题的优秀回答者       ------------------------------------------------------------------------------------------------------ 在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合…
本文转自:https://zhuanlan.zhihu.com/p/27238630 在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下tensorflow的数据读取机制,文章的最后还会给出实战代码以供参考. 一.tensorflow读取机制图解 首先需要思考的一个问题是,什么是数据读取?以图像数据为例,读取数据的过程可以用下图来表示: 假设我们的…
在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下tensorflow的数据读取机制,文章的最后还会给出实战代码以供参考. 一.tensorflow读取机制图解 首先需要思考的一个问题是,什么是数据读取?以图像数据为例,读取数据的过程可以用下图来表示: 假设我们的硬盘中有一个图片数据集0001.jpg,0002.jpg,0003.jpg……我们只需…
tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名.而创建tf的文件名队列就需要使用到 tf.train.slice_input_producer 函数. tf…
Tensorflow 数据读取有三种方式: Preloaded data: 预加载数据,在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况). Feeding: Python产生数据,再把数据喂给后端.TensorFlow程序运行的每一步, 让Python代码来供给数据. Reading from file: 从文件中直接读取,在TensorFlow图的起始, 让一个输入管线从文件中读取数据. (https://www.cnblogs.com/jyxbk/p/77…
本文整理了TensorFlow中的数据读取方法,在TensorFlow中主要有三种方法读取数据: Feeding:由Python提供数据. Preloaded data:预加载数据. Reading from files:从文件读取. Feeding 我们一般用tf.placeholder节点来feed数据,该节点不需要初始化也不包含任何数据,我们在执行run()或者eval()指令时通过feed_dict参数把数据传入graph中来计算.如果在运行过程中没有对tf.placeholder节点传…
Tensorflow数据读取方式主要包括以下三种 Preloaded data:预加载数据 Feeding: 通过Python代码读取或者产生数据,然后给后端 Reading from file: 通过TensorFlow队列机制,从文件中直接读取数据 前两种方法比较基础而且容易理解,在Tensorflow入门教程.书本中经常可以见到,这里不再进行介绍. 在介绍Tensorflow第三种读取数据方法之前,介绍以下有关队列相关知识 Queue(队列) 队列是用来存放数据的,并且tensorflow…
一.资料 参考原文: TensorFlow全新的数据读取方式:Dataset API入门教程 API接口简介: TensorFlow的数据集 二.背景 注意,在TensorFlow 1.3中,Dataset API是放在contrib包中的: tf.contrib.data 而在TensorFlow 1.4中,Dataset API已经从contrib包中移除,变成了核心API的一员: tf.data. 此前,在TensorFlow中读取数据一般有两种方法: 使用placeholder读内存中的…
Tensorflow读取数据的一般方式有下面3种: preloaded直接创建变量:在tensorflow定义图的过程中,创建常量或变量来存储数据 feed:在运行程序时,通过feed_dict传入数据 reader从文件中读取数据:在tensorflow图开始时,通过一个输入管线从文件中读取数据 Preloaded方法的简单例子 import tensorflow as tf """定义常量""" const_var = tf.constant…
https://zhuanlan.zhihu.com/p/27238630 WholeFileReader # 我们用一个具体的例子感受tensorflow中的数据读取.如图, # 假设我们在当前文件夹中已经有A.jpg.B.jpg.C.jpg三张图片, # 我们希望读取这三张图片5个epoch并且把读取的结果重新存到read文件夹中. # 导入tensorflow import tensorflow as tf # 新建一个Session with tf.Session() as sess:…
最近有位博友提出了一种应用场景,根据工作中实际遇到的类似的产品应用场景,记录下自己的解决方案. 场景: 需要在云端控制和采集各个站点的PLC数据.各个站点是分散的,每个站点有公网访问能力,但是分散站点的PLC没有固定IP,部分站点PLC设备不止一台. 方案一: 在这种场景下,其实最优和高效的解决方案是,使用物联网网关+MQTT的方式最可靠.这种方案比较简单,在每个站点的PLC上层加上物联网网关,网关与PLC设备进行数据通信.物联网网关一般支持多种数据协议,包括像Modbus等工控协议. 所以使用…
本博客默认读者对神经网络与Tensorflow有一定了解,对其中的一些术语不再做具体解释.并且本博客主要以图片数据为例进行介绍,如有错误,敬请斧正. 使用Tensorflow训练神经网络时,我们可以用多种方式来读取自己的数据.如果数据集比较小,而且内存足够大,可以选择直接将所有数据读进内存,然后每次取一个batch的数据出来.如果数据较多,可以每次直接从硬盘中进行读取,不过这种方式的读取效率就比较低了.此篇博客就主要讲一下Tensorflow官方推荐的一种较为高效的数据读取方式——tfrecor…
首先介绍数据读取问题,现在TensorFlow官方推荐的数据读取方法是使用tf.data.Dataset,具体的细节不在这里赘述,看官方文档更清楚,这里主要记录一下官方文档没有提到的坑,以示"后人".因为是记录踩过的坑,所以行文混乱,见谅. I 问题背景 不感兴趣的可跳过此节. 最近在研究ENAS的代码,这个网络的作用是基于增强学习,能够自动生成合适的网络结构.原作者使用TensorFlow在cifar10上成功自动生成了网络结构,并取得了不错的效果. 但问题来了,此时我需要将代码转移…
关于Tensorflow读取数据,官网给出了三种方法: 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据. 从文件读取数据: 在TensorFlow图的起始, 让一个输入管线从文件中读取数据. 预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况). 在使用Tensorflow训练数据时,第一步为准备数据,现在我们只讨论图像数据.其数据读取大致分为:原图读取.二进制文件读取.tf标准存储文件读取. 一…
tensorflow之tfrecord数据读取 Tensorflow关于TFRecord格式文件的处理.模型的训练的架构为: 1.获取文件列表.创建文件队列:http://blog.csdn.net/lovelyaiq/article/details/78711944(tfrecord格式,保存,读取) 2.图像预处理:http://blog.csdn.net/lovelyaiq/article/details/78716325 3.合成Batch:http://blog.csdn.net/lo…
Tensorflow中之前主要用的数据读取方式主要有: 建立placeholder,然后使用feed_dict将数据feed进placeholder进行使用.使用这种方法十分灵活,可以一下子将所有数据读入内存,然后分batch进行feed:也可以建立一个Python的generator,一个batch一个batch的将数据读入,并将其feed进placeholder.这种方法很直观,用起来也比较方便灵活jian,但是这种方法的效率较低,难以满足高速计算的需求. 使用TensorFlow的Queu…
Fork版本项目地址:SSD 一.TFR数据读取 创建slim.dataset.Dataset对象 在train_ssd_network.py获取数据操作如下,首先需要slim.dataset.Dataset对象 # Select the dataset. # 'imagenet', 'train', tfr文件存储位置 # TFR文件命名格式:'voc_2012_%s_*.tfrecord',%s使用train或者test dataset = dataset_factory.get_datas…
最近学习tensorflow,发现其读取数据的方式看起来有些不同,所以又重新系统地看了一下文档,总得来说,tensorflow 有三种主流的数据读取方式: 1) 传送 (feeding): Python 可以在程序的运行过程中,将数据传送进定义好的 tensor 变量中 2) 从文件读取 (reading from files): 一个输入流从文件中直接读取数据 3) 预加载数据 (preloaded data): 这个很好理解,就是将所有的数据一次性全部读进内存里. 对于第三种方式,在数据量小…
关于TensorFlow读取数据,官网给出了三种方法: 供给数据(Feeding):在TensorFlow程序运行的每一步,让python代码来供给数据. 从文件读取数据:在TensorFlow图的起始,让一个输入管线从文件中读取数据. 预加载数据:在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况). 对于数据量较小而言,可能一般选择直接将数据加载进内存,然后再分batch输入网络进行训练(tip:使用这种方法时,结合yeild 使用更为简洁).但是如果数据量较…
查询得到OleDbDataReader后,有三种方式支持数据读取,如下: //方法一**速度中等 OleDbDataReader reader = command.ExecuteReader(); while (reader.Read()) { ]; } //方法二**速度最慢 OleDbDataReader reader = command.ExecuteReader(); while (reader.Read()) { var t1 = reader["字段名"]; } //方法三…
在上篇博客(geotrellis使用初探)中简单介绍了geotrellis-chatta-demo的大致工作流程,但是有一个重要的问题就是此demo如何调取数据进行瓦片切割分析处理等并未说明,经过几天的调试.分析.源代码研读终于大致搞明白了其数据调取方式,下面简单介绍. 经过调试发现系统第一次调用数据的过程就是系统启动的时候调用了initCache方法,明显可以看出此方法是进行了数据缓存,那必然牵扯到数据的调取,整个过程清晰明了,只新建了一个RasterSource类,并调用了相关方法.明显数据…
原文:XML数据读取方式性能比较(一) 几个月来,疑被SOA,一直在和XML操作打交道,SQL差不多又忘光了.现在已经知道,至少有四种常用人XML数据操作方式(好像Java差不多),不过还没有实际比较过这些方式各有哪些特点或优劣.正好看到网上也没有这方面的实验,偶来总结一下. 测试开始先读取XML源,用一个比较大的RSS文件链接,复制到项目bin/debug目录下. Stream xmlStream =new MemoryStream(File.ReadAllBytes(path)); 一.Xm…