noip 1998 洛谷P1013 进制位】的更多相关文章

题目描述 著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母代表数字. 例如: L K V E L L K V E K K V E KL V V E KL KK E E KL KK KV 其含义为: L+L=L,L+K=K,L+V=V,L+E=E K+L=K,K+K=V,K+V=E,K+E=KL …… E+E=KV 根据这些规则可推导出:L=0,K=1,V=2,E=3 同时可以确定该表表示的是4进制加法 //感谢lxylxy123456同学为本题新加一组数据 输入输出…
P1013 进制位 题目描述 著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母代表数字. 例如: + L K V E L L K V E K K V E KL V V E KL KK E E KL KK KV 其含义为: L+L=L,L+K=K,L+V=V,L+E=E K+L=K,K+K=V,K+V=E,K+E=KL …… E+E=KV 根据这些规则可推导出:L=0,K=1,V=2,E=3 同时可以确定该表表示的是4进制加法 //感谢lxylxy123456同学为本…
P1013 进制位 题目描述 著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母代表数字. 例如: + L K V E L L K V E K K V E KL V V E KL KK E E KL KK KV 其含义为: L+L=L,L+K=K,L+V=V,L+E=E K+L=K,K+K=V,K+V=E,K+E=KL …… E+E=KV 根据这些规则可推导出:L=0,K=1,V=2,E=3 同时可以确定该表表示的是4进制加法 //感谢lxylxy123456同学为本…
题目描述 著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母代表数字. 例如: + L K V E L L K V E K K V E KL V V E KL KK E E KL KK KV 其含义为: L+L=L,L+K=K,L+V=V,L+E=E K+L=K,K+K=V,K+V=E,K+E=KL -- E+E=KV 根据这些规则可推导出:L=0,K=1,V=2,E=3 同时可以确定该表表示的是4进制加法 //感谢lxylxy123456同学为本题新加一组数据 输入…
题目描述 著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母代表数字. 例如: L K V E L L K V E K K V E KL V V E KL KK E E KL KK KV 其含义为: L+L=L,L+K=K,L+V=V,L+E=E K+L=K,K+K=V,K+V=E,K+E=KL …… E+E=KV 根据这些规则可推导出:L=0,K=1,V=2,E=3 同时可以确定该表表示的是4进制加法 //感谢lxylxy123456同学为本题新加一组数据 输入输出…
洛谷P1017 进制转换 题目描述 我们可以用这样的方式来表示一个十进制数: 将每个阿拉伯数字乘以一个以该数字所处位置的(值减1)为指数,以10为底数的幂之和的形式.例如:123可表示为 \(1*10^2+2*10^1+3*10^0\) 这样的形式. 与之相似的,对二进制数来说,也可表示成每个二进制数码乘以一个以该数字所处位置的(值-1)为指数,以2为底数的幂之和的形式.一般说来,任何一个正整数R或一个负整数-R都可以被选来作为一个数制系统的基数.如果是以R或-R为基数,则需要用到的数码为 0,…
洛谷P1017 进制转换 题意分析 给出一个数n,要求用负R进制显示. n∈[-32768,32767].R ∈[-20,-2] 考察的是负进制数的转换,需要理解短除法. 看到这道题的时候,我是比较蒙圈的.随手拿短除法试了试,但是发现结果不对.最明显的原因,一个数对一个负数取模,结果可能是一个负数. 联想一下在做进制转化的时候,实在不断地做[除]和[取余]的操作.取余直接是取的余数,在做除法的时候,其实是有一个向下取整的过程.如: 我们对125做短除法,余数为1时,125/2=72.5.实际写的…
推荐洛谷 题目描述 我们可以用这样的方式来表示一个十进制数: 将每个阿拉伯数字乘以一个以该数字所处位置的(值减1)为指数,以10为底数的幂之和的形式.例如:123可表示为 1*10^2+2*10^1+3*10^0这样的形式. 与之相似的,对二进制数来说,也可表示成每个二进制数码乘以一个以该数字所处位置的(值-1)为指数,以2为底数的幂之和的形式.一般说来,任何一个正整数R或一个负整数-R都可以被选来作为一个数制系统的基数.如果是以R或-R为基数,则需要用到的数码为 0,1,....R-1.例如,…
题目描述 我们可以用这样的方式来表示一个十进制数: 将每个阿拉伯数字乘以一个以该数字所处位置的(值减1)为指数,以10为底数的幂之和的形式.例如:123可表示为 1*10^2+2*10^1+3*10^0这样的形式. 与之相似的,对二进制数来说,也可表示成每个二进制数码乘以一个以该数字所处位置的(值-1)为指数,以2为底数的幂之和的形式.一般说来,任何一个正整数R或一个负整数-R都可以被选来作为一个数制系统的基数.如果是以R或-R为基数,则需要用到的数码为 0,1,....R-1.例如,当R=7时…
[题解] 纯模拟题. 我们都知道十进制数化成m进制数可以用短除法,即除m取余.逆序排列.而m进制数化为十进制数,按权展开求和即可. 但在本题中进制的基数R可能为负数,我们知道a%R的符号与R一致,也就是说在本题中我们用短除法得到的某一位上的值可能为负数,要注意向上一位借1化成正的. #include<cstdio> #include<algorithm> #include<cstring> #define LL long long #define rg register…