召回 & 召回算法】的更多相关文章

召回 & 召回算法 recall https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall?hl=zh-cn https://developers.google.cn/machine-learning/crash-course/classification/check-your-understanding-accuracy-precision-recall?hl=…
目录 1. 前言 2. 构建画像 3. 内容召回的算法 1. 前言 在之前总结过协同过滤的召回通路后,今天我们来总结下召回策略中的重头戏:基于内容的召回通路,也即我们常说的基于标签的召回.这里就要涉及两个一直很流行的词汇:用户画像User Profile和物品画像Item Profile. 说回推荐系统,它的使命就是,要在用户(User)和物品(Item)之间建立连接.那么用户画像和物品画像是否是推荐系统的"银弹"呢?答案肯定不是,但也不能说用户画像一无是处. 用户画像只是推荐系统构建…
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第29篇文章,我们来聊聊SVD在上古时期的推荐场景当中的应用. 推荐的背后逻辑 有没有思考过一个问题,当我们在淘宝或者是某东这类电商网站购物的时候.我们一进首页,就会看到首页展出了很多商品.这些商品往往质量很高,很吸引人,一旦逛起来可能就没个结束.那么问题来了,电商平台拥有那么多商品,它是怎么知道我们可能会喜欢什么样的商品的呢?这背后的逻辑是什么? 简单来说在这背后,平台端的算法做了两件事情,第一件事情是召回,第二件…
一般来说,召回率和查准率的关系如下:1.如果需要很高的置信度的话,查准率会很高,相应的召回率很低:2.如果需要避免假阴性的话,召回率会很高,查准率会很低.下图右边显示的是召回率和查准率在一个学习算法中的关系.值得注意的是,没有一个学习算法是能同时保证高查准率和召回率的,要高查准率还是高召回率,取决于自己的需求.此外,查准率和召回率之间的关系曲线可以是多样性,不一定是图示的形状. 如何取舍查准率和召回率数值: 一开始提出来的算法有取查准率和召回率的平均值,如下面的公式average=(P+R)/2…
摘要: 数据挖掘.机器学习和推荐系统中的评测指标—准确率(Precision).召回率(Recall).F值(F-Measure)简介. 引言: 在机器学习.数据挖掘.推荐系统完成建模之后,需要对模型的效果做评价. 业内目前常常采用的评价指标有准确率(Precision).召回率(Recall).F值(F-Measure)等,下图是不同机器学习算法的评价指标.下文讲对其中某些指标做简要介绍. 本文针对二元分类器! 本文针对二元分类器!! 本文针对二元分类器!!! 对分类的分类器的评价指标将在以后…
协同过滤推荐(Collaborative Filtering Recommendation)主要包括基于用户的协同过滤算法与基于物品的协同过滤算法. 下面,以movielens数据集为例,分别实践这两种算法. movielens数据集包含四列,[用户ID|电影ID|打分|时间戳],根据用户的历史评分向用户召回电影候选集. UserCF 基于用户的协同过滤算法主要包括两个步骤. (1) 找到和目标用户兴趣相似的用户集合. (2) 找到这个集合中的用户喜欢的,且目标用户没有听说过的物品推荐给目标用户…
评价指标是针对同样的数据,输入不同的算法,或者输入相同的算法但参数不同而给出这个算法或者参数好坏的定量指标. 以下为了方便讲解,都以二分类问题为前提进行介绍,其实多分类问题下这些概念都可以得到推广. 准确率 准确率是最好理解的评价指标,它是一个比值: \[ 准确率 = \cfrac{算法分类正确的数据个数}{输入算法的数据的个数} \] 但是使用准确率评价算法有一个问题,就是在数据的类别不均衡,特别是有极偏的数据存在的情况下,准确率这个评价指标是不能客观评价算法的优劣的.例如下面这个例子: 我们…
参考链接:https://www.cnblogs.com/Zhi-Z/p/8728168.html 具体更详细的可以查阅周志华的西瓜书第二章,写的非常详细~ 一.机器学习性能评估指标 1.准确率(Accurary) 准确率是我们最常见的评价指标,而且很容易理解,就是被分对的样本数除以所有的样本数,通常来说,正确率越高,分类器越好. 准确率确实是一个很好很直观的评价指标,但是有时候准确率高并不能代表一个算法就好.比如某个地区某天地震的预测,假设我们有一堆的特征作为地震分类的属性,类别只有两个:0:…
item2vec将用户的行为序列转化成item组成的句子,模仿word2vec训练word embedding将item embedding.基本思想是把原来高维稀疏的表示方式(one_hot)映射到低维稠密的向量空间中,这样我们就可以用这个低维向量来表示该项目(电影),进而通过计算两个低维向量之间的相似度来衡量两个项目之间的相似性. embedding就是用一个低维的向量表示一个物体,可以是一个词,或是一个商品,或是一个电影等等.这个embedding向量的性质是能使距离相近的向量对应的物体有…
ContentBased算法的思想非常简单:根据用户过去喜欢的物品(本文统称为 item),为用户推荐和他过去喜欢的物品相似的物品.而关键就在于这里的物品相似性的度量,这才是算法运用过程中的核心. CB的过程一般包括以下三步: 物品表示(Item Representation):为每个item抽取出一些特征(也就是item的content了)来表示此item: 特征学习(Profile Learning):利用一个用户过去喜欢(及不喜欢)的item的特征数据,来学习出此用户的喜好特征(profi…