本文为作者学习李宏毅机器学习课程时参照样例完成homework1的记录. 任务描述(Task Description) 现在有某地空气质量的观测数据,请使用线性回归拟合数据,预测PM2.5. 数据集描述(Dataset Description) train.csv 该文件中是2014年每月前20天每小时的观察数据,每小时的数据是18个维度的(其中之一是PM2.5). test.csv 该文件中包含240组数据,每组数据是连续9个小时的所有观测数据(同样是18个维度). 请预测每组数据对应的第10…
机器学习三要素 机器学习的三要素为:模型.策略.算法. 模型:就是所要学习的条件概率分布或决策函数.线性回归模型 策略:按照什么样的准则学习或选择最优的模型.最小化均方误差,即所谓的 least-squares(在spss里线性回归对应的模块就叫OLS即Ordinary Least Squares): 算法:基于训练数据集,根据学习策略,选择最优模型的计算方法.确定模型中每个θi取值的计算方法,往往归结为最优化问题.对于线性回归,我们知道它是有解析解的,即正规方程 The normal equa…
笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归&正规公式) Andrew Ng机器学习课程笔记--week3(逻辑回归&正则化参数) Andrew Ng机器学习课程笔记--week4(神经网络) Andrew Ng机器学习课程笔记--week5(上)(神经网络损失函数&反向传播算法) Andrew Ng机器学习课程笔记--week5(下)(…
title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模模糊糊的感觉,也刚入门,虽然现在也是入门,但是对于一些概念已经有了比较深的认识(相对于最开始学习机器学习的时候).所以为了打好基础,决定再次学习一下Andrew Ng的课程,并记录笔记以供以后复习参考. 1. 内容概要 Introduction 什么是机器学习 监督学习 非监督学习 Linear R…
Andrew Ng机器学习课程笔记(一)之线性回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364598.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录了Andrew Ng课程第一章线性回归,主要介绍了梯度下降法,正规方程,损失函数,特征缩放,学习率的选择等等 1.梯度下降法 原理图解: (1)  目标:最小化建立…
Andrew 机器学习课程笔记 完成 Andrew 的课程结束至今已有一段时间,课程介绍深入浅出,很好的解释了模型的基本原理以及应用.在我看来这是个很好的入门视频,他老人家现在又出了一门 deep learning 的教程,虽然介绍的内容很浅,毕竟针对大部分初学者.不管学习到什么程度,能将课程跟一遍,或多或少会对知识体系的全貌有一个大致的理解.如果有时间的话,强烈建议跟完课程的同时完成各项作业.但值得注意的是,机器学习除了需要适当的数理基础之外,还是一门实践科学,只有通过不断的深入积累才能有更好…
Andrew 机器学习课程笔记 完成 Andrew 的课程结束至今已有一段时间,课程介绍深入浅出,很好的解释了模型的基本原理以及应用.在我看来这是个很好的入门视频,他老人家现在又出了一门 deep learning 的教程,虽然介绍的内容很浅,毕竟针对大部分初学者.不管学习到什么程度,能将课程跟一遍,或多或少会对知识体系的全貌有一个大致的理解.如果有时间的话,强烈建议跟完课程的同时完成各项作业.但值得注意的是,机器学习除了需要适当的数理基础之外,还是一门实践科学,只有通过不断的深入积累才能有更好…
Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录了Andrew Ng课程第五章应用机器学习的建议,主要介绍了在测试新数据出现较大误差该怎么处理,这期间讲到了数据集的分类,偏差,方差,学习曲线等概念,帮…
Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录Andrew Ng课程第四章和第五章的神经网络,主要介绍前向传播算法,反向传播算法,神经网络的多类分类,梯度校验,参数随机初始化,参数的更新等等 1.神经网络概述…
Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录Andrew Ng课程第三章正则化,主要介绍了线性回归和逻辑回归中,怎样去解决欠拟合和过拟合的问题 简要介绍:在进行线性回归或逻辑回归时,常常会出现以下三种情况 回归…