前面介绍线性回归,但实际中,用线性回归去拟合整个数据集是不太现实的,现实中的数据往往不是全局线性的 当然前面也介绍了局部加权线性回归,这种方法有些局限 这里介绍另外一种思路,树回归 基本思路,用决策树将数据集划分成若干个子集,然后再子集上再用线性回归进行拟合 决策树是种贪心算法,最简单典型的决策树算法是ID3 ID3,每次都选取最佳特征来进行划分,并且按照特征的取值来决定划分的个数,比如性别,就划分为男,女 在决定最佳特征时,用香农熵作为指标,表示当前的划分是否会让数据更加有序 ID3的局限是,…