Regression trees树回归 以及其他】的更多相关文章

https://www.cnblogs.com/wuliytTaotao/p/10724118.html 选 weighted variance 最小的 但是weighted variance是怎么计算的? Gini Index基尼系数:在CART里面划分决策树的条件是采用Gini Index 总体内包含的类别越杂乱,GINI指数就越大  information gain ratio 信息增益率:信息增益是针对一个一个的特征而言的,就是看一个特征t,系统有它和没它的时候信息量各是多少,两者的差值…
第9章 树回归 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=default"></script> 树回归 概述 我们本章介绍 CART(Classification And Regression Trees, 分类回归树) 的树构建算法.该算法既可以用于分类还可以用于回归. 树回归 场景 我们在第 8 章…
前面介绍线性回归,但实际中,用线性回归去拟合整个数据集是不太现实的,现实中的数据往往不是全局线性的 当然前面也介绍了局部加权线性回归,这种方法有些局限 这里介绍另外一种思路,树回归 基本思路,用决策树将数据集划分成若干个子集,然后再子集上再用线性回归进行拟合 决策树是种贪心算法,最简单典型的决策树算法是ID3 ID3,每次都选取最佳特征来进行划分,并且按照特征的取值来决定划分的个数,比如性别,就划分为男,女 在决定最佳特征时,用香农熵作为指标,表示当前的划分是否会让数据更加有序 ID3的局限是,…
本文来自<机器学习实战>(Peter Harrington)第九章"树回归"部分,代码使用python3.5,并在jupyter notebook环境中测试通过,推荐clone仓库后run cell all就可以了. github地址:https://github.com/gshtime/machinelearning-in-action-python3 转载请标明原文链接 1 原理 CART(Classification and Regression Trees,分类回归…
一.论文<QuickScorer:a Fast Algorithm to Rank Documents with Additive Ensembles of Regression Trees>是为了解决LTR模型的预测问题,如果LTR中的LambdaMart在生成模型时产生的树数和叶结点过多,在对样本打分预测时会遍历每棵树,这样在线上使用时效率较慢,这篇文章主要就是利用了bitvector方法加速打分预测.代码我找了很久没找到开源的,后来无意中在Solr ltr中看到被改动过了的源码,不过这个…
Gradient Boosted Regression Trees 2   Regularization GBRT provide three knobs to control overfitting: tree structure, shrinkage, and randomization. Tree Structure The depth of the individual trees is one aspect of model complexity. The depth of the t…
:http://hi.baidu.com/hehehehello/blog/item/0b59cd803bf15ece9023d96e.html#send http://en.wikipedia.org/wiki/Logistic_regression Logistic regression (逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性.比如某用户购买某商品的可能性,某病人患有某种疾病的可能性,以及某广告被用户点击的可能性等.(注意这里是:“可能性”,而非数学上的“概率…
Logistic regression (逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性.比如某用户购买某商品的可能性,某病人患有某种疾病的可能性,以及某广告被用户点击的可能性等.(注意这里是:“可能性”,而非数学上的“概率”,logisitc回归的结果并非数学定义中的概率值,不可以直接当做概率值来用.该结果往往用于和其他特征值加权求和,而非直接相乘) 那么它究竟是什么样的一个东西,又有哪些适用情况和不适用情况呢?   一.官方定义: , Figure 1. The log…
Logistic regression (逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性.比如某用户购买某商品的可能性,某病人患有某种疾病的可能性,以及某广告被用户点击的可能性等.(注意这里是:“可能性”,而非数学上的“概率”,logisitc回归的结果并非数学定义中的概率值,不可以直接当做概率值来用.该结果往往用于和其他特征值加权求和,而非直接相乘) 那么它究竟是什么样的一个东西,又有哪些适用情况和不适用情况呢?   一.官方定义: , Figure 1. The log…
Logistic regression (逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性.比如某用户购买某商品的可能性,某病人患有某种疾病的可能性,以及某广告被用户点击的可能性等.(注意这里是:“可能性”,而非数学上的“概率”,logisitc回归的结果并非数学定义中的概率值,不可以直接当做概率值来用.该结果往往用于和其他特征值加权求和,而非直接相乘) 那么它究竟是什么样的一个东西,又有哪些适用情况和不适用情况呢?   一.官方定义: , Figure 1. The log…