Mobilenet V1】的更多相关文章

mobilenet v1 论文解读 论文地址:https://arxiv.org/abs/1704.04861 核心思想就是通过depthwise conv替代普通conv. 有关depthwise conv可以参考https://www.cnblogs.com/sdu20112013/p/11759928.html 模型结构: 类似于vgg这种堆叠的结构. 每一层的运算量 可以看到,运算量并不是与参数数量绝对成正比,当然整体趋势而言,参数量更少的模型会运算更快. 代码实现 https://gi…
目录 1. Depth Separable Convolution 2. 网络结构 3. 宽度因子和分辨率因子 4. 代码实现 参考博客: https://cuijiahua.com/blog/2018/02/dl_6.html 1. Depth Separable Convolution A standard convolution both filters and combines inputs into a new set of outputs in one step. The depth…
完整代码及其数据,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 这里结合网络的资料和MobileNet论文,捋一遍MobileNet,基本代码和图片都是来自网络,这里表示感谢,参考链接均在后文.下面开始. MobileNet论文写的很好,有想法的可以去看一下,我这里提供翻译地址: 深度学习论文翻译解析(十七):MobileNets: Efficient Convolutional Ne…
虽然很多CNN模型在图像识别领域取得了巨大的成功,但是一个越来越突出的问题就是模型的复杂度太高,无法在手机端使用,为了能在手机端将CNN模型跑起来,并且能取得不错的效果,有很多研究人员做了很多有意义的探索和尝试,今天就介绍两个比较轻量级的模型 mobile net 和 shuffle net. 在介绍这几个轻量型的网络之前,我们先来看看,为什么卷积神经网络的运算功耗这么大. 卷积神经网络,顾名思义,就是会有很多的卷积运算,而卷积神经网络中,最费时间的就是其中的卷积运算.我们知道,一张 h×w"…
from:https://blog.csdn.net/qq_14845119/article/details/73648100 Inception v1的网络,主要提出了Inceptionmodule结构(1*1,3*3,5*5的conv和3*3的pooling组合在一起),最大的亮点就是从NIN(Network in Network)中引入了1*1 conv,结构如下图所示,代表作GoogleNet 假设previous layer的大小为28*28*192,则, a的weights大小,1*…
前言 深度卷积网络除了准确度,计算复杂度也是考虑的重要指标.本文列出了近年主流的轻量级网络,简单地阐述了它们的思想.由于本人水平有限,对这部分的理解还不够深入,还需要继续学习和完善. 最后我参考部分列出来的文章都写的非常棒,建议继续阅读. 复杂度分析 理论计算量(FLOPs):浮点运算次数(FLoating-point Operation) 参数数量(params):单位通常为M,用float32表示. 对比 std conv(主要贡献计算量) params:\(k_h\times k_w\ti…
转载:https://zhuanlan.zhihu.com/p/33075914 MobileNet V2 论文初读 转载:https://blog.csdn.net/wfei101/article/details/79334659  网络模型压缩和优化:MobileNet V2网络结构理解 转载: https://zhuanlan.zhihu.com/p/50045821 mobilenetv1和mobilenetv2的区别 MobileNetV2: Inverted Residuals an…
1. Abstract 本文旨在简单介绍下各种轻量级网络,纳尼?!好吧,不限于轻量级 2. Introduction 2.1 Inception 在最初的版本 Inception/GoogleNet,其核心思想是利用多尺寸卷积核去观察输入数据.举个栗子,我们看某个景象由于远近不同,同一个物体的大小也会有所不同,那么不同尺度的卷积核观察的特征就会有这样的效果.于是就有了如下的网络结构图: 图1: Inception module, naive version 于是我们的网络就变胖了,通过增加网络的…
最近一段时间,重新研读了谷歌的mobilenet系列,对该系列有新的认识. 1.MobileNet V1 这篇论文是谷歌在2017年提出了,专注于移动端或者嵌入式设备中的轻量级CNN网络.该论文最大的创新点是,提出了深度可分离卷积(depthwise separable convolution). 首先,我们分析一下传统卷积的运算过程,请参考第一个动图或者这篇博客.可以看出,传统卷积分成两步,每个卷积核与每张特征图进行按位相成然后进行相加,此时,计算量为$D_F*D_F*D_K*D_K*M*N$…
01 ShuffleNet V1要解决什么问题 为算力有限的嵌入式场景下专门设计一个高效的神经网络架构. 02 亮点 使用了两个新的操作:pointwise group convolution和channel shuffle. 根据这两个操作构建了ShuffleUnit,整个ShuffleNet都是由ShuffleUnit组成. 所谓的的pointwise group convolution就是分组卷积与1x1卷积的结合!!! 2.1 Channel Shuffle shuffle的步骤如下:…