题面: 刚开始想复杂了, 还以为是个笛卡尔树.... 实际上我们发现, 对于询问(l,r)每个点的贡献是$min(r,R[i])-max(l,L[i])+1$ 数据范围比较大在线树套树的话明显过不了, 还是想离线的算法好了, 只考虑求$\sum min(r,R[i])$, 对于$\sum max(l,L[i])$同理 将询问按$l$从大到小排, 将点$x$的贡献转化为$[x,R[x]-1]$区间加等差, $[R[x],n]$区间加$R[x]$, 这样$\sum min(r,R[i])$就变成对位…