偏差 (Deviation) https://datawhalechina.github.io/pms50/#/chapter11/chapter11 发散型文本 (Diverging Texts) 如果您想根据单个指标查看项目的变化情况,并可视化此差异的顺序和数量,那么散型条形图 (Diverging Bars) 是一个很好的工具. 它有助于快速区分数据中组的性能,并且非常直观,并且可以立即传达这一点. 导入所需要的库 import numpy as np # 导入numpy库 import…
数据可视化实例分析 作者:白宁超 2017年7月19日09:09:07 摘要:数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息.但是,这并不就意味着数据可视化就一定因为要实现其功能用途而令人感到枯燥乏味,或者是为了看上去绚丽多彩而显得极端复杂.为了有效地传达思想概念,美学形式与功能需要齐头并进,通过直观地传达关键的方面与特征,从而实现对于相当稀疏而又复杂的数据集的深入洞察.然而,设计人员往往并不能很好地把握设计与功能之间的平衡,从而创造出华而不实的数据可视化形式,无法达到其主要目的,…
偏差 (Deviation) 带标记的发散型棒棒糖图 (Diverging Lollipop Chart with Markers) 带标记的棒棒糖图通过强调您想要引起注意的任何重要数据点并在图表中适当地给出推理,提供了一种对差异进行可视化的灵活方式. https://datawhalechina.github.io/pms50/#/chapter13/chapter13 导入所需要的库 import numpy as np # 导入numpy库 import pandas as pd # 导入…
一.综述 Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,图像也更加美观,本文基于seaborn官方API还有自己的一些理解.   1.1.样式控制:axes_style() and set_style() seaborn提供了5个主题: darkgrid 黑色网格(默认) whitegrid 白色网格 dark 黑色背景 white 白色背景 ticks 带刻度线 一个简单的小例子: import numpy as npsns.set_styl…
转载(有添加.修改)作者:但盼风雨来_jc链接:https://www.jianshu.com/p/238a13995b2b來源:简书著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 本次分享将介绍如何在Python中使用Pandas库实现MySQL数据库的读写.首先我们需要了解点ORM方面的知识 ORM技术   对象关系映射技术,即ORM(Object-Relational Mapping)技术,指的是把关系数据库的表结构映射到对象上,通过使用描述对象和数据库之间映射的元数…
1.数据概览 第一步当然是把缺失的数据找出来, Pandas 找缺失数据可以使用 info() 这个方法(这里选用的数据源还是前面一篇文章所使用的 Excel ,小编这里简单的随机删除掉几个数据) import pandas as pd # 相对路径 df = pd.read_excel("result_data.xlsx") print(df) # 输出结果 plantform read_num fans_num rank_num like_num create_date 0 cnb…
https://datawhalechina.github.io/pms50/#/chapter10/chapter10 如果您想根据单个指标查看项目的变化情况,并可视化此差异的顺序和数量,那么散型条形图 (Diverging Bars) 是一个很好的工具. 它有助于快速区分数据中组的性能,并且非常直观,并且可以立即传达这一点. 导入所需要的库 import numpy as np # 导入numpy库 import pandas as pd # 导入pandas库 import matplot…
  在一幅图表中,文本.坐标轴和图像的是信息传递的核心,对着三者的设置是作图这最为关心的内容,在上一篇博客中虽然列举了一些设置方法,但没有进行深入介绍,本文以围绕如何对文本和坐标轴进行设置展开(对图像的设置在后续介绍到各种图绘制时介绍). 这里所说的文本是指在使用matplotlib作图过程中通过代码的方式往图中添加的各种文字,包括figure标题.axes标题.坐标轴标签.坐标轴刻度标签.注释.普通文本等.轴设置指的是对与坐标轴相关的的元素的设置,例如显示范围.刻度.刻度标签等. In [1]…
关联 (Correlation) 关联图表用于可视化2个或更多变量之间的关系. 也就是说,一个变量如何相对于另一个变化. 散点图(Scatter plot) 散点图是用于研究两个变量之间关系的经典的和基本的图表. 如果数据中有多个组,则可能需要以不同颜色可视化每个组. 在 matplotlib 中,您可以使用 plt.scatterplot() 方便地执行此操作. 导入需要的模块库 import numpy as np # 导入numpy库 import pandas as pd # 导入pan…
排序 (Ranking) 棒棒糖图 (Lollipop Chart) 棒棒糖图表以一种视觉上令人愉悦的方式提供与有序条形图类似的目的. https://datawhalechina.github.io/pms50/#/chapter16/chapter16 导入所需要的库 import numpy as np # 导入numpy库 import pandas as pd # 导入pandas库 import matplotlib as mpl # 导入matplotlib库 import mat…