NLP语言模型】的更多相关文章

DeepNLP的核心关键/NLP语言模型 /word embedding/word2vec Indexing: 〇.序 一.DeepNLP的核心关键:语言表示(Representation) 二.NLP词的表示方法类型 1.词的独热表示one-hot representation 2.词的分布式表示distributed representation 三.NLP语言模型 四.词的分布式表示 1. 基于矩阵的分布表示 2. 基于聚类的分布表示 3. 基于神经网络的分布表示,词嵌入( word em…
语言模型: I. 基本思想 区别于其他大多数检索模型从查询到文档(即给定用户查询,如何找出相关的文档), 语言模型由文档到查询,即为每个文档建立不同的语言模型,判断由文档生成用户查 询的可能性有多大,然后按照这种生成概率由高到低排序,作为搜索结果. II. 生成查询概率 为每个文档建立一个语言模型,语言模型代表了单词(或单词序列)在文档中的分布情 况.针对查询中的单词,每个单词都有一个抽取概率,将这些单词的抽取概率相乘就是文 档生成查询的概率. III. 存在问题 由于一个文档文字内容有限,所以…
1. NLP问题简介 0x1:NLP问题都包括哪些内涵 人们对真实世界的感知被成为感知世界,而人们用语言表达出自己的感知视为文本数据.那么反过来,NLP,或者更精确地表达为文本挖掘,则是从文本数据出发,来尽可能复原人们的感知世界,从而表达真实世界的过程.这里面就包括如图中所示的模型和算法,包括: ()文本层:NLP文本表示: ()文本-感知世界:词汇相关性分析.主题模型.意见情感分析等: ()文本-真实世界:基于文本的预测等: 显而易见,文本表示在文本挖掘中有着绝对核心的地位,是其他所有模型建构…
一.学习NLP背景介绍:      从2019年4月份开始跟着华为云ModelArts实战营同学们一起进行了6期关于图像深度学习的学习,初步了解了关于图像标注.图像分类.物体检测,图像都目标物体检测等,基本了解了卷积神经网络(CNN)原理及相关常用模型,如:VGG16.MaxNet等.之后从9月份开始在华为云AI专家的带领指引下,对AI深度学习的另外一个重要领域:自然语言处理(NLP)的学习,到目前为止学习了:命名实体识别.文本分类.文本相似度分析.问答系统.人脸检测.在这一个多月对NLP的处理…
1. NLP问题简介 0x1:NLP问题都包括哪些内涵 人们对真实世界的感知被成为感知世界,而人们用语言表达出自己的感知视为文本数据.那么反过来,NLP,或者更精确地表达为文本挖掘,则是从文本数据出发,来尽可能复原人们的感知世界,从而表达真实世界的过程.这里面就包括如图中所示的模型和算法,包括: ()文本层:NLP文本表示: ()文本-感知世界:词汇相关性分析.主题模型.意见情感分析等: ()文本-真实世界:基于文本的预测等: 显而易见,文本表示在文本挖掘中有着绝对核心的地位,是其他所有模型建构…
NLP 语言模型 最大似然估计 \(p(w_{i} | w_{i-1}) = \frac{c(w_{i-1}w_{i})}{\sum \limits_{w_{i}} c(w_{i-1}w_{i})}\) 句子的概率计算公式 \[ \begin{align*} s & = w_{1}w_{2}...w_{l}, (l 是句子中词的个数) \\ p(s) & = p(w_{1}|<BOS>)p(w_{2}|w_{1})p(w_{3} | w_{2}w_{1})...p(w_{l}|…
原文转载:http://licstar.net/archives/328 Deep Learning 算法已经在图像和音频领域取得了惊人的成果,但是在 NLP 领域中尚未见到如此激动人心的结果.关于这个原因,引一条我比较赞同的微博. @王威廉:Steve Renals算了一下icassp录取文章题目中包含deep learning的数量,发现有44篇,而naacl则有0篇.有一种说法是,语言(词.句子.篇章等)属于人类认知过程中产生的高层认知抽象实体,而语音和图像属于较为底层的原始输入信号,所以…
转自licstar,真心觉得不错,可惜自己有些东西没有看懂 这篇博客是我看了半年的论文后,自己对 Deep Learning 在 NLP 领域中应用的理解和总结,在此分享.其中必然有局限性,欢迎各种交流,随便拍. Deep Learning 算法已经在图像和音频领域取得了惊人的成果,但是在 NLP 领域中尚未见到如此激动人心的结果.关于这个原因,引一条我比较赞同的微博. @王威廉:Steve Renals算了一下icassp录取文章题目中包含deep learning的数量,发现有44篇,而na…
本文是对xing_NLP中的用N-gram语言模型做完型填空这样一个NLP项目环境搭建的一个说明,本来想写在README.md中.第一次用github中的wiki,想想尝试一下也不错,然而格式非常的混乱,自己都满意,所以先在博客园记录一下,等github博客搭建成功了再说. 1. 操作系统: 作为programer,linux自然是首先选择,ubuntu,centos等等都可以.我用的是CentOS7.3,之前用Centos6.5各种报错,建议装最新版的linux系统,何为最新版?2016年以后…
作者: 龙心尘 && 寒小阳 时间:2016年2月. 出处: http://blog.csdn.net/longxinchen_ml/article/details/50646528 http://blog.csdn.net/han_xiaoyang/article/details/50646667 声明:版权所有,转载请联系作者并注明出处 1. 引言:朴素贝叶斯的局限性 我们在之前文章<NLP系列(2)_用朴素贝叶斯进行文本分类(上)>探讨过,朴素贝叶斯的局限性来源于其条件独…