首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
平衡搜索树--红黑树 RBTree
】的更多相关文章
平衡搜索树--红黑树 RBTree
红黑树是一棵二叉搜索树,它在每个节点上增加了一个存储位来表示节点的颜色,可以是Red或Black. 通过对任何一条从根到叶子节点简单路径上的颜色来约束树的高度,红黑树保证最长路径不超过最短路径的两倍,因而近似于平衡. 红黑树是满足下面红黑性质的二叉搜索树: 1. 每个节点,不是红色就是黑色的 2. 根节点是黑色的 3. 如果一个节点是红色的,则它的两个子节点是黑色的(不存在连续的红色节点) 4. 对每个节点,从该节点到其所有后代叶节点的简单路径上,均包含相同数目的黑色节点. 思考:为什么满足上面…
高级搜索树-红黑树(RBTree)解析
目录 红黑树的定义 节点与树的定义 旋转操作 插入操作 情况1:p的兄弟u为黑色 情况2: p的兄弟u为红色 插入操作性能分析 代码实现 删除操作 情况1:x的接替者succ为红色 情况2:x的接替者succ为黑色 情况2.1:x的父亲p为黑色,x的兄弟s为黑色,但是s有红色孩子 情况2.2:x的父亲p为黑色,x的兄弟s为黑色,且s没有红色孩子 情况2.3:x的父亲p为黑色,x的兄弟s为红色 情况2.4:x的父亲p为红色,此时x的兄弟s必定为黑色 删除操作性能分析 代码实现 完整代码及测试实例…
高级搜索树-红黑树(RBTree)代码实现
代码实现 代码参考了<数据结构(c++语言版)>--清华大学邓俊辉 "RBTree.h" #pragma once //#include"pch.h" #include<iostream> //宏定义 #define IsRoot(x) ( !((x)->pa) ) #define IsLChild(x) ( !(IsRoot(x) ) && (x)==(x)->pa->lc) #define IsRChil…
java——红黑树 RBTree
对于完全随机的数据,普通的二分搜索树就很好用,只是在极端情况下会退化成链表. 对于查询较多的情况,avl树很好用. 红黑树牺牲了平衡性,但是它的统计性能更优(综合增删改查所有的操作). 红黑树java实现(不完整,没有进行删除节点的操作): (默认左倾红黑树) package RedBlackTree; //从任意一个节点到叶子节点,经过的黑色节点是一样的——红黑树是保持“黑平衡”的二叉树 //因为23树中的每一个节点到叶子节点的深度是相同的 //红黑树在严格意义上不是平衡二叉树,最大高度:2l…
红黑树(RBTREE)之上-------构造红黑树
该怎么说呢,现在写代码的速度还是很快的,很高兴,o(^▽^)o. 光棍节到了,早上没忍住,手贱了一般,看到*D的优惠,买了个机械键盘,晚上就到了,敲着还是很舒服的,和老婆炫耀了一把哈哈. 光棍节再去*mall买个,带着上班用. 正题,构造红黑树,就是节点的插入与调整,具体的理论我就不说了,图我也不画了,别人画的很好,我在纸上画的我自己都不想看. 贴几个网址作为参考吧: 参考的文档:1.http://www.cnblogs.com/zhb-php/p/5504481.html (推荐) 2.h…
红黑树RBTree
#pragma onceenum colour //子节点的颜色{ RED, BLANK,};template<class K,class V>struct RBTreeNode{ K _key; V _value; RBTreeNode<K, V>* _left; RBTreeNode<K, V>* _right; RBTreeNode<K, V>* _parent; colour _col; RBTr…
二叉查找树 平衡二叉查找树 红黑树 b树 b+树 链表 跳表 链表
https://www.cnblogs.com/mojxtang/p/10122587.html二叉树的新增遍历查找…
1.红黑树和自平衡二叉(查找)树区别 2.红黑树与B树的区别
1.红黑树和自平衡二叉(查找)树区别 1.红黑树放弃了追求完全平衡,追求大致平衡,在与平衡二叉树的时间复杂度相差不大的情况下,保证每次插入最多只需要三次旋转就能达到平衡,实现起来也更为简单. 2.平衡二叉树追求绝对平衡,条件比较苛刻,实现起来比较麻烦,每次插入新节点之后需要旋转的次数不能预知. AVL树是最早出现的自平衡二叉(查找)树 红黑树和AVL树类似,都是在进行插入和删除操作时通过特定操作保持二叉查找树的平衡,从而获得较高的查找性能.红黑树和AVL树的区别在于它使用颜色来标识结点的高度,它…
【转】B树、B-树、B+树、B*树、红黑树、 二叉排序树、trie树Double Array 字典查找树简介
B 树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中:否则,如果查询关键字比结点关键字小,就进入左儿子:如果比结点关键字大,就进入右儿子:如果左儿子或右儿子的指针为空,则报告找不到相应的关键字: 如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树的搜索性…
B树、B+树、红黑树、AVL树
定义及概念 B树 二叉树的深度较大,在查找时会造成I/O读写频繁,查询效率低下,所以引入了多叉树的结构,也就是B树.阶为M的B树具有以下性质: 1.根节点在不为叶子节点的情况下儿子数为 2 ~ M2.除根结点以外的非叶子结点的儿子数为 M/2(向上取整) ~ M3.拥有 K 个孩子的非叶子节点包含 k-1 个keys(关键字),且递增排列4.所有叶子结点在同一层,即深度相同 (叶节点可以看成是一种外部节点,不包含任何关键字信息) 在B-树中,每个结点中关键字从小到大排列,并且当该结点的孩子是非叶…