论文提交时间:11月份中旬左右会议时间:7月份左右 CVPR 2017: 网址:http://cvpr2017.thecvf.com/ 接受论文数:782…
此文主要记录我在18年寒假期间,收集Avrix论文的总结 寒假生活题外   在寒假期间,爸妈每天让我每天跟着他们6点起床,一起吃早点收拾,每天7点也就都收拾差不多.   早晨的时光是人最清醒的时刻,而且到十点左右才开始帮忙做中午饭,中间这么大把的时光,我就来做做自己喜欢的事情.小外甥女也回来,但她每天只有10点起床后才跟我玩,真希望她能早起背背古诗文. 概述   整个项目由数据采集(Python),数据存储(Mysql),数据可视化(C#)组成.   数据采集主要负责从网络上,获取Avrix的论…
这一篇论文很不错,也很有价值;它重新思考了googLeNet的网络结构--Inception architecture,在此基础上提出了新的改进方法; 文章的一个主导目的就是:充分有效地利用computation; 第一部分: 文章提出了四个principles: 原则1:设计网络的时候需要避免 representational bottlenecks; 什么意思呢? 文章中说: 层与层之间进行 information 传递时,要避免这个过程中的数据的extreme compression,也就…
此部分是 计算机视觉中的信号处理与模式识别 与其说是讲述,不如说是一些经典文章的罗列以及自己的简单点评.与前一个版本不同的是,这次把所有的文章按类别归了类,并且增加了很多文献.分类的时候并没有按照传统的分类方法,而是划分成了一个个小的门类,比如SIFT,Harris都作为了单独的一类,虽然它们都可以划分到特征提取里面去.这样做的目的是希望能突出这些比较实用且比较流行的方法.为了以后维护的方便,按照字母顺序排的序. 15. RANSAC随机抽样一致性方法,与传统的最小均方误差等完全是两个路子.在S…
CVPR 2013 (http://www.pamitc.org/cvpr13/tutorials.php) Foundations of Spatial SpectroscopyJames Coggins (ViaSat)https://sites.google.com/site/spatialspectroscopy/pdf file not found, see talk videos here:http://techtalks.tv/events/315/599/ Large-scale…
Graph Cut and Its Application in Computer Vision 原文出处: http://lincccc.blogspot.tw/2011/04/graph-cut-and-its-application-in.html 现在好像需要代理才能访问了... 网络流算法最初用于解决流网络的优化问题,比如水管网络.通信传输和城市的车流等.Graph cut作为其中一类最常见的算法,用于求解流网络的最小割,即寻找一个总容量最小的边集合,去掉这个集合中的所有边将阻断这个网…
持续更新ing~ all *.files come from the author:http://www.cnblogs.com/findumars/p/5009003.html 1 牛人Homepages(随意排序,不分先后): 1.USC Computer Vision Group:南加大,多目标跟踪/检测等: 2.ETHZ Computer Vision Laboratory:苏黎世联邦理工学院,欧洲最好的几个CV/ML研究机构: 3.Helmut Grabner:Online Boost…
From:http://rogerioferis.com/VisualRecognitionAndSearch2014/Resources.html Source Code Non-exhaustive list of state-of-the-art implementations related to visual recognition and search. There is no warranty for the source code links below – use them a…
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的文章,个人非常喜欢,也列出来了. 33. SIFT关于SIFT,实在不需要介绍太多,一万多次的引用已经说明问题了.SURF和PCA-SIFT也是属于这个系列.后面列出了几篇跟SIFT有关的问题.[1999 ICCV] Object recognition from local scale-invar…
As I walked through the large poster-filled hall at CVPR 2013, I asked myself, “Quo vadis Computer Vision?" (Where are you going, computer vision?)  I see lots of papers which exploit last year’s ideas, copious amounts of incremental research, and an…