CVPR2020论文解读:CNN合成的图片鉴别 <CNN-generated images are surprisingly easy to spot... for now> 论文链接:https://arxiv.org/abs/1912.11035 代码链接:https://peterwang512.github.io/CNNDetection/ 该文章被CVPR2020录用,Arxiv公开于2019年12月,作者来自 UC Berkeley 和 Adobe Research. CNN 生成…
论文信息 论文标题:Learning Graph Augmentations to Learn Graph Representations论文作者:Kaveh Hassani, Amir Hosein Khasahmadi论文来源:2022, arXiv论文地址:download论文代码:download 1 Introduction 我们引入了 LG2AR,学习图增强来学习图表示,这是一个端到端自动图增强框架,帮助编码器学习节点和图级别上的泛化表示.LG2AR由一个学习增强参数上的分布的概率策…
论文信息 论文标题:Learning Graph Embedding with Adversarial Training Methods论文作者:Shirui Pan, Ruiqi Hu, Sai-fu Fung, Guodong Long, Jing Jiang, Chengqi Zhang论文来源:2020, ICLR论文地址:download 论文代码:download 1 Introduction 众多图嵌入方法关注于保存图结构或最小化重构损失,忽略了隐表示的嵌入分布形式,因此本文提出对…
论文信息 论文标题:Label-invariant Augmentation for Semi-Supervised Graph Classification论文作者:Han Yue, Chunhui Zhang, Chuxu Zhang, Hongfu Liu论文来源:2022,NeurIPS论文地址:download论文代码:download 1 Introduction 我们提出了一种图对比学习的标签不变增强策略,该策略涉及到下游任务中的标签来指导对比增强.值得注意的是,我们不生成任何图形…
论文链接:https://arxiv.org/pdf/1902.09738v2.pdf 这两个月忙着做实验 博客都有些荒废了,写篇用于3D检测的论文解读吧,有理解错误的地方,烦请有心人指正). 博客原作者Missouter,博客园链接https://www.cnblogs.com/missouter/,欢迎交流. [Abstract] 该论文提出了一种结合图像中语义.几何学与稀疏.稠密信息的3D目标检测算法. 该算法用Faster R-CNN接收作为立体输入的左右图像,同时检测.联系两幅图像中的…
自监督学习(Self-Supervised Learning)多篇论文解读(下) 之前的研究思路主要是设计各种各样的pretext任务,比如patch相对位置预测.旋转预测.灰度图片上色.视频帧排序等等.CVPR19和ICCV19上,Google Brain的几个研究员发表了两篇论文,从另外的视角分析和研究self-supervised learning问题.两篇paper名字分别是:Revisiting Self-Supervised Visual Representation Learnin…
自监督学习(Self-Supervised Learning)多篇论文解读(上) 前言 Supervised deep learning由于需要大量标注信息,同时之前大量的研究已经解决了许多问题.所以近期大家的研究关注点逐渐转向了Unsupervised learning,许多顶会包括ICML, NeurIPS, CVPR, ICCV相继出现一些不错的paper和研究工作. 这里主要关注Unsupervised learning一类特定的方法:Self-supervised learning(自…
A Unified Deep Model of Learning from both Data and Queries for Cardinality Estimation 论文解读(SIGMOD 2021) 本篇博客是对A Unified Deep Model of Learning from both Data and Queries for Cardinality Estimation的一些重要idea的解读,原文连接为:A Unified Deep Model of Learning f…
论文信息 论文标题:MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs论文作者:Qiaoyu Tan, Ninghao Liu, Xiao Huang, Rui Chen, Soo-Hyun Choi, Xia Hu论文来源:2022, ArXiv论文地址:download 论文代码:download 1 Introduction MAE 在图上的应用. 2 Method 整体框架: 2.1 Encoder 本文的掩藏…
论文信息 论文标题:Towards Explanation for Unsupervised Graph-Level Representation Learning论文作者:Qinghua Zheng, Jihong Wang, Minnan Luo, Yaoliang Yu, Jundong Li, Lina Yao, Xiaojun Chang论文来源:2022, arXiv论文地址:download论文代码:download 1 Introduction 使用信息瓶颈的图级表示可解释性.…