R 语言主成分分析(PCA)实战教程】的更多相关文章

数据的导入 > data=read.csv('F:/R语言工作空间/pca/data.csv') #数据的导入> > ls(data) #ls()函数列出所有变量 [1] "X" "不良贷款率" "存贷款比率" "存款增长率" "贷款增长率" "流动比率" "收入利润率" [8] "资本充足率" "资本利润率"…
https://www.cnblogs.com/jin-liang/p/9064020.html 数据的导入 > data=read.csv('F:/R语言工作空间/pca/data.csv') #数据的导入 > > ls(data) #ls()函数列出所有变量 [1] "X" "不良贷款率" "存贷款比率" "存款增长率" "贷款增长率" "流动比率" "收…
什么是R语言? R语言由新西兰奥克兰大学的Ross Ihaka和Robert Gentleman两人共同发明.其词法和语法分别源自Scheme和S语言. R定义:一个能够自有有效的用于统计计算和绘图的语言和环境,它提供了广泛的统计分析和绘图技术. R是用于统计分析.绘图的语言和操作环境,属于GNU系统的一个自由.免费.源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具. R语言语法通俗易懂,很容易学会和掌握语言的语法.而且学会之后,我们可以编制自己的函数来扩展现有的语言.这也就是为什么它…
一.引言 近年来,随着分布式数据处理技术的不断革新,Hive.Spark.Kylin.Impala.Presto 等工具不断推陈出新,对大数据集合的计算和存储成为现实,数据仓库/商业分析部门日益成为各类企业和机构的标配.在这种背景下,是否能探索和挖掘数据价值,具备精细化数据运营的能力,就成为判定一个数据团队成功与否的关键. 在数据从后台走向前台的过程中,数据展示是最后一步关键环节.与冰冷的表格展示相比,将数据转化成图表并进行适当的内容组织,往往能更快速.更直观的传递信息,进而更好的提供决策支持.…
1.PCA 使用场景:主成分分析是一种数据降维,可以将大量的相关变量转换成一组很少的不相关的变量,这些无关变量称为主成分 步骤: 数据预处理(保证数据中没有缺失值) 选择因子模型(判断是PCA还是EFA) 判断要选择的主成分/因子数目 选择主成分 旋转主成分 解释结果 计算主成分或因子的得分 案例:从USJudgeRatings数据集中有11个变量,如何去减化数据(单个主成分分析) 1.使用碎石图确定需要提取的主成分个数 library(psych) # 1.做出碎石图确定主成分的个数 fa.p…
本文发表在博客园, http://www.cnblogs.com/stackworm/ 尽管进展中出现了意想不到的事情,期间中断1个多月,但我仍然会坚持下去. 首先,这份教程适合所有对R语言有兴趣且希望学习的人,这份教程是用来帮助你学习使用R语言的,并非简单了解.其次,它是免费发布且自由交流的,教程是以开发者的角度去讲述R语言的实现.俗话说,万事开头难,R语言也是如此,尽管悉知R的人大多从事统计学相关行业,对编程开发的了解不如专业的软件工程师甚多,但跟着教程一步步的深入,你也会很容易的理解其他语…
学习R语言半年多了,以前比较注重统计方法上的学习,但是最近感觉一些基础知识也很重要.去年的参考资料是<R语言实战>,今年主要是看视频.推荐网易云课堂里的教程,很多资料都是很良心的~ 目前学习的是:R语言数据分析挖掘实战,讲的很全,从基础知识到R语言机器学习的应用. (我是先从后面机器学习开始学的,发现老师在里面用到很多自定义函数.循环,以前在书上看到这些也没有实际操作过,所以赶紧看前面的视频补补课) 今天的例子都很简单啦... 1.while循环 s<-1 i<-0 while(i…
原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及计算步骤 - 文库 主成分分析之R篇 [机器学习算法实现]主成分分析(PCA)--基于python+numpy scikit-learn中PCA的使用方法 Python 主成分分析PCA 机器学习实战-PCA主成分分析.降维(好) 关于主成分分析的五个问题 多变量统计方法,通过析取主成分显出最大的个…
如果你的职业定位是数据分析师/计算生物学家,那么不懂PCA.t-SNE的原理就说不过去了吧.跑通软件没什么了不起的,网上那么多教程,copy一下就会.关键是要懂其数学原理,理解算法的假设,适合解决什么样的问题.学习可以高效,但却没有捷径,你终将为自己的思维懒惰和行为懒惰买单. 2019年04月25日 不该先说covariacne matrix协方差矩阵的,此乃后话,先从直觉理解PCA.先看一个数据实例,明显的两个维度之间有一个相关性,大部分的方差可以被斜对角的维度解释,少数的noise则被虚线解…
R语言PCA分析教程 Principal Component Methods in R(代码下载) 主成分分析Principal Component Methods(PCA)允许我们总结和可视化包含由多个相互关联的定量变量描述的个体/观察的数据集中的信息.每个变量都可以视为不同的维度.如果数据集中包含3个以上的变量,那么可视化多维超空间可能非常困难. 主成分分析用于从多变量数据表中提取重要信息,并将此信息表示为一组称为主成分的新变量.这些新变量对应于原件的线性组合.主成分的数量小于或等于原始变量…