论文参考:Deep Sparse Rectifier Neural Networks (很有趣的一篇paper) 起源:传统激活函数.脑神经元激活频率研究.稀疏激活性 传统Sigmoid系激活函数 传统神经网络中最常用的两个激活函数,Sigmoid系(Logistic-Sigmoid.Tanh-Sigmoid)被视为神经网络的核心所在. 从数学上来看,非线性的Sigmoid函数对中央区的信号增益较大,对两侧区的信号增益小,在信号的特征空间映射上,有很好的效果. 从神经科学上来看,中央区酷似神经元…
论文参考:Deep Sparse Rectifier Neural Networks (很有趣的一篇paper) Part 0:传统激活函数.脑神经元激活频率研究.稀疏激活性 0.1  一般激活函数有如下一些性质: 非线性: 当激活函数是线性的,一个两层的神经网络就可以基本上逼近所有的函数.但如果激活函数是恒等激活函数的时候,即f(x)=x,就不满足这个性质,而且如果MLP(多层感知机)使用的是恒等激活函数,那么其实整个网络跟单层神经网络是等价的: 可微性: 当优化方法是基于梯度的时候,就体现了…
修正线性单元(Rectified linear unit,ReLU) Rectified linear unit 在神经网络中,常用到的激活函数有sigmoid函数f(x)=11+exp(−x).双曲正切函数f(x)=tanh(x),今天要说的是另外一种activation function,rectified linear function,f(x)=max(0,x), The rectifier is, as of 2015, the most popular activation func…
[转载] ReLU和BN层简析 来源:https://blog.csdn.net/huang_nansen/article/details/86619108 卷积神经网络中,若不采用非线性激活,会导致神经网络只能拟合线性可分的数据,因此通常会在卷积操作后,添加非线性激活单元,其中包括logistic-sigmoid.tanh-sigmoid.ReLU等. sigmoid激活函数应用于深度神经网络中,存在一定的局限性,当数据落在左右饱和区间时,会导致导数接近0,在卷积神经网络反向传播中,每层都需要…
TensorFlow运作方式入门 代码:tensorflow/g3doc/tutorials/mnist/ 本篇教程的目的,是向大家展示如何利用TensorFlow使用(经典)MNIST数据集训练并评估一个用于识别手写数字的简易前馈神经网络(feed-forward neural network).我们的目标读者,是有兴趣使用TensorFlow的资深机器学习人士. 因此,撰写该系列教程并不是为了教大家机器学习领域的基础知识. 在学习本教程之前,请确保您已按照安装TensorFlow教程中的要求…
1.交叉熵代价函数 2.正则化方法:L1和L2 regularization.数据集扩增.dropout 3. 数据预处理 4.机器学习算法中如何选取超参数:学习速率.正则项系数.minibatch size 5.随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比.实现对比 随机梯度下降中,momentum的理解 Optimization: Stochastic Gradient Descent 6.…
系统架构.自底向上,设备层.网络层.数据操作层.图计算层.API层.应用层.核心层,设备层.网络层.数据操作层.图计算层.最下层是网络通信层和设备管理层.网络通信层包括gRPC(google Remote Procedure Call Protocol)和远程直接数据存取(Remote Direct Memory Access,RDMA),分布式计算需要.设备管理层包手包括TensorFlow分别在CPU.GPU.FPGA等设备上的实现.对上层提供统一接口,上层只需处理卷积等逻辑,不需要关心硬件…
catalogue . 个人理解 . 基本使用 . MNIST(multiclass classification)入门 . 深入MNIST . 卷积神经网络:CIFAR- 数据集分类 . 单词的向量表示(Vector Representations of Words) . 循环神经网络(RNN).LSTM(Long-Short Term Memory, LSTM) . 用深度学习网络搭建一个聊天机器人 0. 个人理解 在学习的最开始,我在这里写一个个人对deep leanring和神经网络的粗…
包含如下几个部分: 1.面向机器学习初学者的 MNIST 初级教程 2.面向机器学习专家的 MNIST 高级教程 3.TensorFlow 使用指南 4.卷积神经网络 5.单词的向量表示(word embedding) 6.循环神经网络 (Recurrent Neural Network, 简称 RNN) 7.序列到序列模型 (Sequence-to-Sequence Model) 8.Mandelbrot 集合 9.偏微分方程 10.MNIST 数据下载 MNIST机器学习入门 当我们开始学习…
前言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等,主要学习资料来自Standford Andrew Ng老师在Coursera的教程,同时也参考了大量网上的相关资料(在后面列出). 本文主要记录我在学习神经网络过程中的心得笔记,共分为三个部分: Neural network - Representation:神经网络的模型描述: Neural network - Learning:神经网络的模型训练…