平衡树以及AVL树】的更多相关文章

平衡树 平衡树有AVL树.红黑树.2-3树.2-3-4树 AVL树 AVL树是最早的一种平衡树,它以发明者的名字命名:AVL是一种特殊的二叉搜索树,平移保证二叉搜索树的正确. 特征 在AVL树中节点的左子树和右子树的高度差不会大于1 实现 在AVL树中每个节点都存储着一个额外的数据,它的左子树和右子树的高度差,这个差值不能大于1.插入一个元素后,检查该元素所在的最低子树的根,如果它的子节点的高度相差大于1,执行一次或两次旋转使它们的高度相等:然后接着检查上面的节点,必要时均衡高度:这个检测一直向…
平衡树是计算机科学中的一类数据结构. 平衡树是计算机科学中的一类改进的二叉查找树.一般的二叉查找树的查询复杂度是跟目标结点到树根的距离(即深度)有关,因此当结点的深度普遍较大时,查询的均摊复杂度会上升,为了更高效的查询,平衡树应运而生了. 在这里,平衡指所有叶子的深度趋于平衡,更广义的是指在树上所有可能查找的均摊复杂度偏低. 几乎所有平衡树的操作都基于树操作,通过旋转操作可以使得树趋于平衡. 对一棵查找树(search tree)进行查询/新增/删除 等动作, 所花的时间与树的高度h 成比例,…
package Demo; public class AVLtree { private Node root; //首先定义根节点 private static class Node{ //定义Node指针参数 private int key; //节点 private int balance; //平衡值 private int height; //树的高度 private Node left; //左节点 private Node right; //右节点 private Node pare…
先来了解一些基本概念: 1)什么是二叉平衡树? 之前我们了解过二叉查找树,我们说通常来讲, 对于一棵有n个节点的二叉查找树,查询一个节点的时间复杂度为log以2为底的N的对数. 通常来讲是这样的, 但是...有例外 比如,我们向一棵树中输入预先排好序的数据, 如1,2,3,4,5,...10000, 可以想象到,将形成一棵斜树那么查找10000就要经过9999次比较才能得到,这显然不是我们期望看到的 所以,我们希望引入一个约束条件----任何节点的深度不得过深. 这就是二叉平衡树 二叉平衡树是二…
目录 一.平衡二叉树定义 二.这货还是不是平衡二叉树? 三.平衡因子 四.如何保持平衡二叉树平衡? 五.平衡二叉树插入节点的四种情况 六.平衡二叉树操作的代码实现 七.AVL树总结 @ 一.平衡二叉树定义 平衡二叉树又称AVL树.它可以是一颗空树,或者具有以下性质的二叉排序树:它的左子树和右子树的高度之差(平衡因子)的绝对值不超过1且它的左子树和右子树都是一颗平衡二叉树. 从上面简单的定义我们可以得出几个重要的信息: 平衡二叉树又称AVL树 平衡二叉树必须是二叉排序树 每个节点的左子树和右子树的…
首先要说AVL树,我们就必须先说二叉查找树,先介绍二叉查找树的一些特性,然后我们再来说平衡树的一些特性,结合这些特性,然后来介绍AVL树. 一.二叉查找树 1.二叉树查找树的相关特征定义 二叉树查找树,又叫二叉搜索树,是一种有顺序有规律的树结构.它可以有以下几个特征来定义它: (1)首先它是一个二叉树,具备二叉树的所有特性,他可以有左右子节点(左右孩子),可以进行插入,删除,遍历等操作: (2)如果根节点有左子树,则左子树上的所有节点的值均小于根节点上的值,如果根节点有右子树,则有字数上的所有节…
AVL树.splay树(伸展树)和红黑树比较 一.AVL树: 优点:查找.插入和删除,最坏复杂度均为O(logN).实现操作简单 如过是随机插入或者删除,其理论上可以得到O(logN)的复杂度,但是实际情况大多不是随机的.如果是随机的,则AVL    树能够达到比RB树更优的结果,因为AVL树的高度更低.如果只进行插入和查找,则AVL树是优于RB树的,因为RB树    更多的优势还是在删除动作上. 缺点:1)借助高度或平衡因子,为此需要改造元素结构,或额外封装-->伸展树可以避免. 2)实测复杂…
首先,我们应该考虑一个问题,数据库在磁盘中是怎样存储的?(答案写在下一篇文章中) b树.b+树.AVL树.红黑树的区别很大.虽然都可以提高搜索性能,但是作用方式不同. 通常文件和数据库都存储在磁盘,如果数据量大,不一定能全部加载到内存,因此使用b树,一次只加载少量节点数据.其次,b树是多路搜索树,M路的B树最多有M个子节点,通过多路搜索,降低了树的高度,从而在避免内存溢出的情况下减少了内存与磁盘的IO次数,提升了搜索性能. 但是使用b树,数据存储在每一个节点中,搜索时会做局部中序遍历,如果查询多…
最近数据结构刚好看到了伸展树,在想这个东西有什么应用,于是顺便学习一下. 二叉查找树(BST),对于树上的任意一个节点,节点的左子树上的关键字都小于这个节点的关键字,节点的右子树上的关键字都大于这个节点的关键字. 对二叉查找树进行中序遍历,可以得到一个有序的序列. 下面这些操作的期望复杂度是$O(log N)$,但是如果BST中的数据是有序的序列BST就会变成一条链,复杂度会退化成$O(N)$ 为了避免越界减少边界情况的特殊判断,一般在BST中额外插入一个关键码为正无穷和一个关键码为负无穷的节点…
AVL树概念 前面学习二叉查找树和二叉树的各种遍历,但是其查找效率不稳定(斜树),而二叉平衡树的用途更多.查找相比稳定很多.(欢迎关注数据结构专栏) AVL树是带有平衡条件的二叉查找树.这个平衡条件必须要容易保持.而且要保证它的深度是O(logN). AVL的条件是左右树的高度差(平衡因子)不大于1:并且它的每个子树也都是平衡二叉树. 对于平衡二叉树的最小个数,n0=0;n1=1;nk=n(k-1)+n(k-2)+1;(求法可以类比斐波那契!) 难点:AVL是一颗二叉排序树,用什么样的规则或者规…
参考:自平衡二叉查找树 ,红黑树, 算法:理解红黑树 (英文pdf:红黑树) 目录 自平衡二叉树介绍 avl树 2-3树 LLRBT(Left-leaning red-black tree左倾红黑树 (代码见git) 2-3-4树和红黑树 avl和红黑树的比较 自平衡二叉查找树 诞生的目的: 它是为了解决二叉查找树的查找时间复杂度最差是O(n)的问题而发明的数据结构. 完全二叉树的公式: n = 2h - 1 BST的查找运行时间和BST的高度有关.一个树的高度指的是从树的根开始所能到达的最长的…
1.为什么要有平衡二叉树? 上一节我们讲了一般的二叉查找树, 其期望深度为O(log2n), 其各操作的时间复杂度O(log2n)同时也是由此决定的.但是在某些情况下(如在插入的序列是有序的时候), 二叉查找树就会退化成近似链或链.如下图(b). 此时, 其操作的时间复杂度退化成线性的,即O(n).我们可以通过随机化建立二叉搜索树来尽量的避免这种情况,但是在进行了多次的操作之后,由于在删除时,我们总是选择将待删除节点的后继代替它本身,这样就会造成总是右边的节点数目减少,以至于树向左偏沉.这同时也…
题目描述 pks 得到了一棵 \(N\) 个节点,权值为 \(1\sim N\) 的 \(AVL\) 树,他觉得这棵树太大了,于是他想要删掉一些节点使得最后剩下的树恰好有 \(K\) 个节点.如果 pks 删掉了一个节点,那么以这个节点为根的整棵子树都会被删掉.最后剩下的树必须依旧是一棵 \(AVL\) 树. pks 希望,留下的 \(K\) 个节点的中序遍历的字典序最小.他希望你能帮他找到这个方案,作为报答,他将会把自己的财富分一半给你. 第一行两个整数 \(N,K\),表示节点数量和要保留的…
  1.概念: AVL树本质上还是一个二叉搜索树,不过比二叉搜索树多了一个平衡条件:每个节点的左右子树的高度差不大于1. 二叉树的应用是为了弥补链表的查询效率问题,但是极端情况下,二叉搜索树会无限接近于链表,这种时候就无法体现二叉搜索树在查询时的高效率,而最初出现的解决方式就是AVL树.如下图: 2.旋转 说到AVL树就不得不提到树的旋转,旋转是AVL维持平衡的方式,主要有以下四种类型. 2.1.左左旋转 如图2-1所示,此时A节点的左树与右树的高度差为2,不符合AVL的定义,此时以B节点为轴心…
为了提高二插排序树的性能,规定树中的每个节点的左子树和右子树高度差的绝对值不能大于1.为了满足上面的要求需要在插入完成后对树进行调整.下面介绍各个调整方式. 右单旋转 如下图所示,节点A的平衡因子(左子树高度减右子树高度)为1.由于在节点A的左孩子B的左子树上插入了新节点,导致B的左子树高度增加1,从而导致A的平衡因子为2,这时为了保持平衡需要对树进行调整. 旋转的方法就是将A的变为B的右子树,将B的右子树变为A的左子树. 示例代码: private Node RRotate(Node node…
二叉查找树(BSTree)中进行查找.插入和删除操作的时间复杂度都是O(h),其中h为树的高度.BST的高度直接影响到操作实现的性能,最坏情况下,二叉查找树会退化成一个单链表,比如插入的节点序列本身就有序,这时候性能会下降到O(n).可见在树的规模固定的前提下,BST的高度越低越好. >>平衡二叉树 平衡二叉树是计算机科学中的一类改进的二叉查找树.平衡二叉树具有以下性质: (1)一棵空树是平衡二叉树 (2)如果树不为空,它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉…
学习过了二叉查找树,想必大家有遇到一个问题.例如,将一个数组{1,2,3,4}依次插入树的时候,形成了图1的情况.有建立树与没建立树对于数据的增删查改已经没有了任何帮助,反而增添了维护的成本.而只有建立的树如图2,才能够最大地体现二叉树的优点.            在上述的例子中,图2就是一棵平衡二叉树.科学家们提出平衡二叉树,就是为了让树的查找性能得到最大的体现(至少我是这样理解的,欢迎批评改正).下面进入今天的正题,平衡二叉树. AVL的定义 平衡二叉查找树:简称平衡二叉树.由前苏联的数学…
AVL树(平衡二叉树): AVL树本质上是一颗二叉查找树,但是它又具有以下特点:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为平衡二叉树.下面是平衡二叉树和非平衡二叉树对比的例图: 平衡因子(bf):结点的左子树的深度减去右子树的深度,那么显然-1<=bf<=1; AVL树的作用: 我们知道,对于一般的二叉搜索树(Binary Search Tree),其期望高度(即为一棵平衡树时)为…
1. 为什么平衡树? 在二叉搜索树(BST,Binary Search Tree)中提到,BST树可能会退化成一个链表(整棵树中只有左子树,或者只有右子树),这将大大影响二叉树的性能. 前苏联科学家G.M. Adelson-Velskii 和 E.M. Landis给出了答案.他们在1962年发表的一篇名为<An algorithm for the organization of information>的文章中提出了一种自平衡二叉查找树(self-balancing binary searc…
在上一篇博文中我们提到了,如果对普通二叉查找树进行随机的插入.删除,很可能导致树的严重不平衡 所以这一次,我们就来介绍一种最老的.可以实现左右子树"平衡效果"的树(或者说算法),即AVL树.其名字与其发明者有关,这种数据结构的发明者为Adelson-Velskii和Landis,所以这种树或者说这种算法就叫AVL树. 那么,AVL树如何实现"平衡"呢? 首先我们来想一想,除了肉眼观察外,如何看出一棵树的"平衡程度"?我们知道任一结点都有两个属性:…
AVL树是有平衡条件的二叉搜索树.这个平衡条件必须容易保持,而且需要保证树的深度是O(logN). AVL=BBST 作为二叉搜索树的最后一部分,我们来介绍最为经典的一种平衡二叉搜索树:AVL树.回顾此前的几节,我们首先介绍的是二叉查找树BST.然而我们也能感受到,尽管从同时兼顾高效的静态操作 和动态操作的角度讲,BST相对此前简单的向量和链表已经具有某种优势和潜质,但是毕竟它并不能保证这一点.其原因在于 它的高度,无论是从平均情况 还是最坏情况都不能保证做到足够的低,具体来说也就是做到logN…
二叉搜索树只有保持平衡时其查找效率才会高. 要保持二叉搜索树的平衡不是一件易事.不过还是有一些非常经典的办法可以做到,其中最好的方法就是将二叉搜索树实现为AVL树. AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 "An algorithm for the organization of information" 中发表了它.AVL树是一种特殊类型的二叉树,它的每个结点都保存一份额外的信息:结点的平衡因子. 结点…
单例模式 第一种(懒汉,线程不安全): public class Singleton { private static Singleton instance; private Singleton (){} public static Singleton getInstance() { if (instance == null) { instance = new Singleton(); } return instance; } } 这种写法lazy loading很明显,但是致命的是在多线程不能…
数据结构与算法(一):基础简介 数据结构与算法(二):基于数组的实现ArrayList源码彻底分析 数据结构与算法(三):基于链表的实现LinkedList源码彻底分析 数据结构与算法(四):基于哈希表实现HashMap核心源码彻底分析 数据结构与算法(五):LinkedHashMap核心源码彻底分析 数据结构与算法(六):树与二叉树 数据结构与算法(七):赫夫曼树 数据结构与算法(八):二叉排序树 本文目录 一.二叉排序树性能问题 在上一篇中我们提到过二叉排序树构造可能出现的性能问题,比如我们…
学习数据结构应该是一个循序渐进的过程: 当我们学习数组时,我们要体会数组的优点:仅仅通过下标就可以访问我们要找的元素(便于查找). 此时,我们思考:假如我要在第一个元素前插入一个新元素?采用数组需要挪动整个数组,且计算机找一块数组大小的连续空间是否容易呢??? 此时,我们不得不学习链表,学习了链表,很容易的,插入与删除变的高效率了. 但此时我们如果想高效的访问元素,怎么办??(我们没有办法再通过下标的方式了,因为没有下标了),我们不得不按照顺序查找,无疑这也是低效率的. 假如,我们希望采用一种结…
本文首发于我的公众号 Linux云计算网络(id: cloud_dev) ,专注于干货分享,号内有 10T 书籍和视频资源,后台回复 「1024」 即可领取,欢迎大家关注,二维码文末可以扫. 一.AVL树 AVL树是一种平衡查找树,在前面的两篇文章:二叉搜索树 和 红黑树 中都提到过.由于二叉搜索树在某些特殊情况下是不平衡的(任意一个结点深度过大),因此其一些动态集合操作在最坏情况下的时间复杂度为O(n).因此提出一些对二叉搜索树效率改进的树结构使最坏时间复杂度降为O(lgn),AVL树和红黑树…
平衡二叉树(Balanced Binary Tree 或 Height-Balanced Tree)又称AVL树 (a)和(b)都是排序二叉树,但是查找(b)的93节点就需要查找6次,查找(a)的93节点就需要查找3次,所以(b)的效率不高. 平衡二叉树(Balanced Binary Tree 或 Height-Balanced Tree)又称AVL树.它或者是一颗空树,或者是具有下列性质的二叉树:它的左子树和右子树的深度只差的绝对值不超过1.若将二叉树上节点的平衡因子BF(Balance F…
AVL树 https://baike.baidu.com/item/AVL%E6%A0%91/10986648 在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为1,所以它也被称为高度平衡树.增加和删除可能需要通过一次或多次树旋转来重新平衡这个树.AVL树得名于它的发明者G. M. Adelson-Velsky和E. M. Landis,他们在1962年的论文<An algorithm for the organization of inform…
二叉查找树(BSTree)中进行查找.插入和删除操作的时间复杂度都是O(h),其中h为树的高度.BST的高度直接影响到操作实现的性能,最坏情况下,二叉查找树会退化成一个单链表,比如插入的节点序列本身就有序,这时候性能会下降到O(n).可见在树的规模固定的前提下,BST的高度越低越好. 1.平衡二叉树 平衡二叉树是计算机科学中的一类改进的二叉查找树.平衡二叉树具有以下性质: (1)一棵空树是平衡二叉树 (2)如果树不为空,它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树…
二叉搜索树只有保持平衡时其查找效率才会高. 要保持二叉搜索树的平衡不是一件易事.不过还是有一些非常经典的办法可以做到,其中最好的方法就是将二叉搜索树实现为AVL树. AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 "An algorithm for the organization of information" 中发表了它.AVL树是一种特殊类型的二叉树,它的每个结点都保存一份额外的信息:结点的平衡因子. 结点…