Link of the Paper: https://arxiv.org/abs/1705.03122 Motivation: Compared to recurrent layers, convolutions create representations for fixed size contexts, however, the effective context size of the network can easily be made larger by stacking severa…
Link of the Paper: https://arxiv.org/abs/1711.09151 Motivation: LSTM units are complex and inherently sequential across time. Convolutional networks have shown advantages on machine translation and conditional image generation. Innovation: The author…
MIL陷入局部最优,检测到局部,无法完整的检测到物体.将instance划分为空间相关和类别相关的子集.在这些子集中定义一系列平滑的损失近似代替原损失函数,优化这些平滑损失. C-MIL learns instance subsets, where the instances are spatially related, i.e., overlapping with each other, and class related, i.e., having similar object class…
Link of the Paper: https://arxiv.org/abs/1706.03762 Motivation: The inherently sequential nature of Recurrent Models precludes parallelization within training examples. Attention mechanisms have become an integral part of compelling sequence modeling…
目录 简介 模型结构 Position Embeddings GLU or GRU Convolutional Block Structure Multi-step Attention Normalization Strategy Initialization 简介 写这篇博客主要是为了进一步了解如何将CNN当作Encoder结构来使用,同时这篇论文也是必看的论文之一.该论文证明了使用CNN作为特征抽取结构实现Seq2Seq,可以达到与 RNN 相接近甚至更好的效果,并且CNN的高并行能力能够大…
From google institution; 1. Before this, DNN cannot be used to map sequences to sequences. In this paper, we propose a sequence learning that makes minimal assumptions on the sequence structure. use lstm to map the input sequence to a vector of a fix…
Sequence to Sequence Learning with NN <基于神经网络的序列到序列学习>原文google scholar下载. @author: Ilya Sutskever (Google)and so on 一.总览 DNNs在许多棘手的问题处理上取得了瞩目的成绩.文中提到用一个包含2层隐藏层神经网络给n个n位数字排序的问题.如果有好的学习策略,DNN能够在监督和反向传播算法下训练出很好的参数,解决许多计算上复杂的问题.通常,DNN解决的问题是,算法上容易的而计算上困难…
通过深度学习技术根据肽段序列预测其LC-MS/MS谱特征 解读人:梅占龙  质谱平台 文献名:Prediction of LC-MS/MS properties of peptides from sequence by deep learning 期刊名:Molecular & Cellular Proteomics 发表时间:2019年9月 IF:4.828 作者: Shenheng Guan​ 1,2,*​ , Michael F. Moran​ 2,3 ​, and Bin Ma​ 1 单…
Convolutional Image Captioning 2018-11-04 20:42:07 Paper: http://openaccess.thecvf.com/content_cvpr_2018/papers/Aneja_Convolutional_Image_Captioning_CVPR_2018_paper.pdf Code: https://github.com/aditya12agd5/convcap Related Papers: 1. Convolutional Se…
原项目链接:https://github.com/chiphuyen/stanford-tensorflow-tutorials/tree/master/assignments/chatbot 一个使用序列的神经聊天者使用注意解码器对序列模型进行排序. 这是一个功能齐全的chatbot. 这是基于Google 翻译 Tensorflow 模型 https://github.com/tensorflow/models/blob/master/tutorials/rnn/translate/ Chi…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld.技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. Encoder-Decoder(编码-解码)是深度学习中非常常见的一个模型框架,比如无监督算法的auto-encoding就是用编码-解码的结构设计并训练的:比如这两年比较热的image caption的应用,就是CNN-RNN的编码-解码框架:再比如神经网络机器翻译NMT模型,往往就是LSTM-LSTM的编码-解码框架.因此,准确的说…
第三周 序列模型和注意力机制(Sequence models & Attention mechanism) 基础模型(Basic Models) 在这一周,你将会学习 seq2seq(sequence to sequence)模型,从机器翻译到语音识别,它们都能起到很大的作用,从最基本的模型开始.之后你还会学习集束搜索(Beam search)和注意力模型(Attention Model),一直到最后的音频模型,比如语音. 现在就开始吧,比如你想通过输入一个法语句子,比如这句 "Jane…
开篇第一篇就写一个paper reading吧,用markdown+vim写东西切换中英文挺麻烦的,有些就偷懒都用英文写了. Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras Abstract Optimization objectives: intrinsic/extrinsic parameters of all keyframes all selected pixels' depth Inte…
sequence to sequence模型是一类End-to-End的算法框架,也就是从序列到序列的转换模型框架,应用在机器翻译,自动应答等场景. Seq2Seq一般是通过Encoder-Decoder(编码-解码)框架实现,Encoder和Decoder部分可以是任意的文字,语音,图像,视频数据,模型可以采用CNN.RNN.LSTM.GRU.BLSTM等等.所以基于Encoder-Decoder,我们可以设计出各种各样的应用算法. 与Seq2Seq框架相对的还有一个CTC,CTC主要是利用序…
Link of the Paper: https://arxiv.org/pdf/1409.3215.pdf Main Points: Encoder-Decoder Model: Input sequence -> A vector of a fixed dimensionality -> Target sequence. A multilayered  LSTM: The LSTM did not have difficulty on long sentences. Deep LSTMs…
1. 前言 近年来,NLP领域发展迅速,而机器翻译是其中比较成功的一个应用,自从2016年谷歌宣布新一代谷歌翻译系统上线,神经机器翻译(NMT,neural machine translation)就取代了统计机器翻译(SMT,statistical machine translation),在翻译质量上面获得了大幅的提高.目前神经机器翻译模型主要分为三种: 一种是以rnn为基础的模型, 一般是LSTM+attention,顺序处理输入信息. 一种是以cnn为基础的模型,今天要讲的Fairseq…
Link of the Paper: https://arxiv.org/abs/1411.4389 Main Points: A novel Recurrent Convolutional Architecture ( CNN + LSTM ): both Spatially and Temporally Deep. The recurrent long-term models are directly connected to modern visual convnet models and…
Link of the Paper: https://arxiv.org/abs/1806.06422 Innovations: The authors propose a novel learning based discriminative evaluation metric that is directly trained to distinguish between human and machine-generated captions. They train an automatic…
Link of the Paper: https://arxiv.org/pdf/1504.06692.pdf Innovations: The authors propose the Novel Visual Concept learning from Sentences ( NVCS ) task. In this task, methods need to learn novel concepts from sentence descriptions of a few images. Th…
Learning while Reading 不限于具体的书,只限于知识的宽度 这个系列集合了一周所学所看的精华,它们往往来自不只一本书 我们之所以将自然界分类,组织成各种概念,并按其分类,主要是因为我们是整个口语交流社会共同遵守的协定的参与者,这个协定以语言的形式固定下来.除非赞成这个协定中规定的有关语言信息的组织和分类,否则我们根本无法交谈. ——Benjamin Lee Whorf Learning and Asking 为什么选择面向对象? 机器语言.汇编语言.面向过程的语言,通过一层层…
论文:word2vec Parameter Learning Explained 发表时间:2016 发表作者:Xin Rong 论文链接:论文链接 为了揭开Word2vec的神秘面纱,不得不重新整理复习了Word2vec的相关资料. Xin Rong 的这篇英文paper是更多人首推的 Word2vec 参考资料.这篇论文理论完备,由浅入深,且直击要害,既有 高屋建瓴的 intuition 的解释,也有细节的推导过程.下面一起学习下这篇paper. 由于word2vec模型学习生成的词向量表示…
Motivation: The lack of transparency of the deep  learning models creates key barriers to establishing trusts to the model or effectively troubleshooting classification errors Common methods on non-security applications: forward propagation / back pr…
Link of the Paper: https://arxiv.org/abs/1805.09019 Innovations: The authors propose a CNN + CNN framework for image captioning. There are four modules in the framework: vision module ( VGG-16 ), which is adopted to "watch" images; language modu…
来源:NIPS 2013 作者:DeepMind 理解基础: 增强学习基本知识 深度学习 特别是卷积神经网络的基本知识 创新点:第一个将深度学习模型与增强学习结合在一起从而成功地直接从高维的输入学习控制策略 详细是将卷积神经网络和Q Learning结合在一起.卷积神经网络的输入是原始图像数据(作为状态)输出则为每一个动作相应的价值Value Function来预计未来的反馈Reward 实验成果:使用同一个网络学习玩Atari 2600 游戏.在測试的7个游戏中6个超过了以往的方法而且好几个超…
1.数学上,不变性 2.信息论上…
Motivation: 阈值分割的阈值并没有通过模型训练学出来,而是凭借主观经验设置,本文通过与背景得分比较提取对应的proposal,不用阈值的另一篇文章是Shou Zheng的AutoLoc,通过伪标签训练回归网络 阈值分割缺点:低阈值会把多个动作实例ground-truth合并成一个动作实例,高阈值会将一个动作实例ground-truth分割成多个动作实例 忽略背景建模: 过去的方法没有对视频的背景建模无法利用动作和背景之间的先验知识 Feature Transformation Modu…
论文下载 作者(三位Google大佬)一开始提出DNN的缺点,DNN不能用于将序列映射到序列.此论文以机器翻译为例,核心模型是长短期记忆神经网络(LSTM),首先通过一个多层的LSTM将输入的语言序列(下文简称源序列)转化为特定维度的向量,然后另一个深层LSTM将此向量解码成相应的另一语言序列(下文简称目标序列).我个人理解是,假设要将中文翻译成法语,那么首先将中文作为输入,编码成英语,然后再将英语解码成法语.这种模型与基于短语的统计机器翻译(Static Machine Translation…
resource: On the Life-Long Learning Capabilities of a NELLI*: A Hyper-Heuristic Optimisation System Wikipedia Hyper-heuristic: https://en.wikipedia.org/wiki/Hyper-heuristic Wikipedia Heuristic: https://en.wikipedia.org/wiki/Heuristic_(computer_scienc…
Link of the Paper: https://arxiv.org/abs/1412.2306 Main Points: An Alignment Model: Convolutional Neural Networks over image regions ( An image -> RCNN -> Top 19 detected locations in addition to the whole image -> the representations based on th…
Link of the Paper: https://arxiv.org/abs/1411.4555 Main Points: A generative model ( NIC, GoogLeNet + LSTM ) based on a deep recurrent architecture: the model is trained to maximize the likelihoodP(S|I) of the target description sentence given the tr…