【learning】洲阁筛】的更多相关文章

问题描述 洲阁筛解决的问题主要是\(n\)范围较大的积性函数前缀和. ​ 已知一积性函数\(f(i)\),求\(\sum_{i=1}^nf(i)\). \(n\leq10^{12}\). 求解方法 如果\(f(i)\)在质数处的取值比较简单,那么可以运用洲阁筛来求解. ​ 我们需要两个辅助数组. \(g_{i,j}\) 定义如下: \[ \begin{aligned} g_{i,j}&=\sum_{k=2}^i[k与p_1,p_2,...,p_j互质或就是其中某个质数]\; s(k)\\ &…
问题描述 快速求素数处点值比较好求的积性函数前缀和 大致过程 Step1.求出一定范围内的素数处点值之和(\(g\)) Step2.利用上面的\(g\)求出一个\(f\)然后用\(f\)求出前缀和 具体过程 (这里约定一下,在下面的内容中用\(p\)表示一个素数,用\(P_i\)表示素数列表中的第\(i\)项) 这里以求\(\sum \phi(i)\)为例 首先对于素数\(p\)来说,\(\phi(p)=p-1\)的,因此我们可以快速求出素数处点值的和\(\sum \phi(p)=\sum p…
Part 1:杜教筛进阶在了解了杜教筛基本应用,如$\sum_{i=1}^n\varphi(i)$的求法后,我们看一些杜教筛较难的应用.求$\sum_{i=1}^n\varphi(i)*i$考虑把它与$id$函数狄利克雷卷积后的前缀和.$$\sum_{i=1}^n\sum_{d|i}\varphi(d)*d*\frac id=\sum_{i=1}^ni^2$$枚举$T=\frac id$,原式化为$$\sum_{T=1}^nT\sum_{d=1}^{\lfloor\frac nT\rfloor}…
题目大意 有 \(n\) 个整数 \(a_1,a_2,\ldots,a_n\),每个数的范围是 \([1,m]\).还有 \(k\) 个限制,每个限制 \(x_i,y_i\) 表示 \(a_{x_i}\leq a_{y_i}\). 问有多少种不同的情况,以及所有情况中 \({\sigma_0(\gcd(a_1,a_2,\ldots,a_n))}^3\) 的和. \(n\leq 20,m\leq {10}^{10}\) 题解 记 \(f(x)\) 为当 \(m=x\) 时第一问的答案. 记 \(g…
洲阁筛 给定一个积性函数$F(n)$,求$\sum_{i = 1}^{n}F(n)$.并且$F(n)$满足在素数和素数次幂的时候易于计算. 显然有: $\sum_{i = 1}^{n} F(n) = \sum_{i = 1}^{\sqrt{n}}F(i) \left(\sum_{\sqrt{n} < p\leqslant n/i, p\ is\ a\ prime} F(p) \right) + \sum_{i = 1, i\ has\ no\ prime\ factor\ greater\ th…
好像在某些情况下杜教筛会遇到瓶颈,先看着.暑假学一些和队友交错的知识的同时开这个大坑.…
先定义几个符号: []:若方括号内为一个值,则向下取整,否则为布尔判断 集合P:素数集合. 题目分析: 题目是一个积性函数.做法之一是洲阁筛,也可以采用Min_25筛. 对于一个可以进行Min_25筛法的积性函数,它需要满足与洲阁筛相同的条件,即: 对于$f(p), p \in P$,它可以多项式表出.对于$f(p^k),p \in P$可以被快速计算出. 这道题中$f(p) = p-1$再对$2$进行修正即可. 对于1的情况我们单独考虑,现在我们对答案进行一些变换. $$\sum_{i=2}^…
首先要求每个数互不相等,故有$x\perp y$. 可以发现$\frac{x}{y}$在$k$进制下为纯循环小数的充要条件为$x\cdot k^{len}\equiv x(mod\ y)$,即$y\perp k$. 接下来进行经典的推导:$$\begin{aligned}&\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[i\perp j][j\perp k]\\=&\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\s…
min25筛简介:用来求积性函数F(x)前缀和的,复杂度O(n0.75/logn),大概能求n<=1010. 记一个数x的最小质因子为R(x),所以当x不为质数时,R(x)<=√x这是废话. 首先求所有质数的F(x)和,下设g(i,j)=ΣF(x),其中2<=x<=i,且x为质数或R(x)>pri[j],其中pri[j]为第j个质数.其实,j的取值至多√n个显而易见,下面可以发现最终状态是g(i,tot),其中tot为√n以内的质数个数.初始化g(i,0),即将所有数视为质数…
目录 1.什么是min_25筛 2.前置知识 2.1.数论函数 2.2.埃拉托色尼筛 2.3.欧拉筛 3.min_25筛 3.1.计算质数贡献 3.2.计算总贡献 3.3.实现 4.例题 4.1.[LOJ]区间素数个数 4.2.[LG P4213]杜教筛 1.什么是min_25筛          min_25 筛和洲阁筛.杜教筛一样,是一种低于线性的用于求积性函数前缀和的筛法.常用 min_25 筛的时间复杂度为\(O(\frac{n^{\frac34}}{\log n})\),而经过优化可以…