目录 概 主要内容 rejection 实际使用 代码 Pang T., Zhang H., He D., Dong Y., Su H., Chen W., Zhu J., Liu T. Adversarial training with rectified rejection. arXiv Preprint, arXiv: 2105.14785, 2021. 概 通过对置信度进行矫正, 然后再根据threshold (1/2)判断是否拒绝. 有点detection的味道, 总体来说是很有趣的点…
原于2018年1月在实验室组会上做的分享,今天分享给大家,希望对大家科研有所帮助. 今天给大家分享一下对抗训练(Adversarial Training,AT). 为何要选择这个主题呢? 我们从上图的Attention的搜索热度可以看出,Attention在出现后,不断被人们所重视,基本上现在的顶会论文都离不开Attention. 同样,AT的搜索热度也持续高涨,因此,我们有理由相信AT也能像Attention一样,在学术界大放光彩. 原本的AT,最初是在样本中加入对抗扰动使神经网络失效,当时A…
出处:arXiv: Artificial Intelligence, 2016(一年了还没中吗?) Motivation 使用GAN+RNN来处理continuous sequential data,并训练生成古典音乐 Introduction In this work, we investigate the feasibility of using adversarial training for a sequential model with continuous data, and eva…
目录 概 主要内容 Chen E. and Lee C. LTD: Low temperature distillation for robust adversarial training. arXiv preprint arXiv:2111.02331, 2021. 概 本文利用distillation来提高网络鲁棒性. 主要内容 如上图所示, 作者认为, 如果我们用one-hot的标签进行训练, 结果会导致图(b)中的情形, 于是两个分布中间的空袭部分均可以作为分类边界, 从而导致存在大量的…
目录 概 主要内容 Random Step的作用 线性性质 gradient alignment 代码 Andriushchenko M. and Flammarion N. Understanding and improving fast adversarial training. In Advances in Neural Information Processing Systems (NIPS), 2020. 概 本文主要探讨: 为什么简单的FGSM不能够提高鲁棒性; 为什么FGSM-RS…
目录 概 主要内容 代码 Pang T., Yang X., Dong Y., Xu K., Su H., Zhu J. Boosting Adversarial Training with Hypersphere Embedding. arXiv preprint arXIv 2002.08619 概 在最后一层, 对weight和features都进行normalize有助于加强对抗训练. 主要内容 一般的神经网络可以用下式表示: \[f(x) = \mathbb{S}(W^Tz + b),…
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples 目录 概 主要内容 实验设置 损失的影响 额外的数据 网络结构 其他的一些tricks Gowal S., Qin C., Uesato J., Mann T. & Kohli P. Uncovering the Limits of Adversarial Training against Norm-Bounded Adv…
论文信息 论文标题:Learning Graph Embedding with Adversarial Training Methods论文作者:Shirui Pan, Ruiqi Hu, Sai-fu Fung, Guodong Long, Jing Jiang, Chengqi Zhang论文来源:2020, ICLR论文地址:download 论文代码:download 1 Introduction 众多图嵌入方法关注于保存图结构或最小化重构损失,忽略了隐表示的嵌入分布形式,因此本文提出对…
(没太听明白,以后再听) 1. 如何欺骗神经网络? 这部分研究最开始是想探究神经网络到底是如何工作的.结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案.比如下图,左边的熊猫被识别成熊猫,但是加上中间的小"噪音"一样的数值,右图的熊猫就识别不出来了.而且这个小"噪音"不是随机的,它更像是offset,是某种系统误差,叠加到图片上去,总是可以欺骗神经网络. 2. 神经网络从权重到输出的映射是非线性的,非常复杂,非常难优化.训…
年域适应挑战(DAC)数据集的实验表明,所提出的方法不仅有效解决了数据集不匹配问题,而且还优于上述无监督域自适应方法.        …