Spark基础:(五)Spark编程进阶】的更多相关文章

一.实验目的 (1)通过实验掌握 Spark SQL 的基本编程方法: (2)熟悉 RDD 到 DataFrame 的转化方法: (3)熟悉利用 Spark SQL 管理来自不同数据源的数据. 二.实验平台 操作系统: centos6.4 Spark 版本:1.5.0 数据库:MySQL 三.实验内容 实验一 1.Spark SQL 基本操作 将下列 JSON 格式数据复制到 Linux 系统中,并保存命名为 employee.json. 为 employee.json 创建 DataFrame…
Python之路,Day7 - 面向对象编程进阶   本节内容: 面向对象高级语法部分 经典类vs新式类 静态方法.类方法.属性方法 类的特殊方法 反射 异常处理 Socket开发基础 作业:开发一个支持多用户在线的FTP程序 面向对象高级语法部分 经典类vs新式类 把下面代码用python2 和python3都执行一下 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 #_*_coding:utf-8_*_     c…
本节内容: 面向对象高级语法部分 经典类vs新式类 静态方法.类方法.属性方法 类的特殊方法 反射 异常处理 Socket开发基础 作业:开发一个支持多用户在线的FTP程序 面向对象高级语法部分 经典类vs新式类 把下面代码用python2 和python3都执行一下 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 #_*_coding:utf-8_*_     class A:     def __init__(se…
一.反射 1.定义:指的是通过字符串来操作类或者对象的属性 2.为什么用反射? 减少冗余代码,提升代码质量. 3.如何用反射? class People: country='China' def __init__(self,name): self.name=name obj=People('jame') #hasattr #print('country' in People.__dict__) print(hasattr(People,'country')) #getattr #print(Pe…
1. Spark 基础 2. Spark Core 3. Spark SQL 4. Spark Streaming 5. Spark 内核机制 6. Spark 性能调优 1. Spark 基础 1.1 Spark 中的相应组件 1.2 Standalone 模式安装 // 1. 准备安装包(见下方参考资料): spark-2.1.3-bin-hadoop2.7.tgz // 2. 修改配置文件 // 2.1 spark-env.sh.template mv spark-env.sh.templ…
Spark菜鸟学习营Day3 RDD编程进阶 RDD代码简化 对于昨天练习的代码,我们可以从几个方面来简化: 使用fluent风格写法,可以减少对于中间变量的定义. 使用lambda表示式来替换对象写法,可以使用到类型推断功能,减少对于类型的定义. 优化后代码如下: return this.getInputRDD(PracticePojo.class) .mapToPair( practicePojo -> new Tuple2<>(practicePojo.getSecurityId(…
函数式编程进阶 1.函数和变量一样作为Scala语言的一等公民,函数可以直接复制给变量: 2.函数更长用的方式是匿名函数,定义的时候只需要说明输入参数的类型和函数体即可,不需要名称,但是匿名函数赋值给一个变量(其实是val常量),Spark源码中大量存在这种语法: 3.函数可以作为参数直接传递给函数,这极大地简化的编程语法: 4.函数式编程一个非常强大的地方之一在于函数的返回值可以是函数,当函数的返回类型是函数的时候,这个时候就是表明Scala的函数是实现了闭包! Scala壁报的内幕是:Sca…
/** * 函数式编程进阶: * 1.函数和变量一样作为Scala语言的一等公民,函数可以直接赋值给变量 * 2.函数更常用的方式是匿名函数,定义的时候只需要说明输入参数的类型和函数体即可,不需要名称, * 一般会把它赋值给变量,在Spark源码中大量存在 * 3.函数可以作为参数直接传递给函数,极大的简化了编程代码,在Java中需要通过callback来实现 * 这样的功能 * 4.当函数的返回类型是函数的时候,这就表明Scala函数实现了闭包,Scala函数其实是类和对象, * 所以,Sca…
Spark学习之编程进阶--累加器与广播(5) 1. Spark中两种类型的共享变量:累加器(accumulator)与广播变量(broadcast variable).累加器对信息进行聚合,而广播变量用来高效分发较大的对象. 2. 共享变量是一种可以在Spark任务中使用的特殊类型的变量. 3. 累加器的用法: 通过在驱动器中调用SparkContext.accumulator(initialValue)方法,创建出存有初始值的累加器.返回值为org.apache.spark.Accumlat…
摘要:Spark编程基础_RDD初级编程 RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 1.RDD编程基础 1.1 RDD创建 [1]从文件系统中加载数据创建RDD Spark采用textFile…
原文:http://www.36dsj.com/archives/61155 一. Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架 dfsSpark基于mapreduce算法实现的分布式计算,拥有HadoopMapReduce所具有的优点;但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map redu…
一.大数据架构 并发计算: 并行计算: 很少会说并发计算,一般都是说并行计算,但是并行计算用的是并发技术.并发更偏向于底层.并发通常指的是单机上的并发运行,通过多线程来实现.而并行计算的范围更广,他是散布到集群上的分布式计算. Spark内存计算比hadoop快100倍,磁盘计算快10倍,在worker节点主要基于内存进行计算,避免了不必要的磁盘io. 二.Spark模块 Spark是没有分布式存储的,必须借助hadoop的HDFS等.资源管理工具自带的是Standalone也支持hadoop的…
Spark 基础入门,集群搭建以及Spark Shell 主要借助Spark基础的PPT,再加上实际的动手操作来加强概念的理解和实践. Spark 安装部署 理论已经了解的差不多了,接下来是实际动手实验: 练习1 利用Spark Shell(本机模式) 完成WordCount spark-shell 进行Spark-shell本机模式 第一步:通过文件方式导入数据 scala> val rdd1 = sc.textFile("file:///tmp/wordcount.txt")…
dataframe以RDD为基础的分布式数据集,与RDD的区别是,带有Schema元数据,即DF所表示的二维表数据集的每一列带有名称和类型,好处:精简代码:提升执行效率:减少数据读取; 如果不配置spark.deploy.recoveryMode选项为ZOOKEEPER,那么集群的所有运行数据在Master重启是都会丢失 spark工作机制 用户在client端提交作业后,会由Driver运行main方法并创建spark context上下文. 执行add算子,形成dag图输入dagschedu…
0x01  Hadoop 慕课网 https://www.imooc.com/learn/391 Hadoop基础 慕课网 https://www.imooc.com/learn/890 Hadoop进阶 百度传课   https://chuanke.baidu.com/v7662331-230792-1635549.html  Sqoop工具 百度传课   https://chuanke.baidu.com/v5145764-218788-1413475.html  Flume工具 百度传课 …
Spark Streaming作为Spark上的四大子框架之一,肩负着实时流计算的重大责任 而相对于另外一个当下十分流行的实时流计算处理框架Storm,Spark Streaming有何优点?又有何不足呢? 首先,对于Storm实时流处理惊人的低延迟性,Spark Streaming的不足很明显 Storm官方说的最低延迟可以使多少毫秒级别的 而Spark Streaming只能做到压秒,也就是零点几秒 相对于Storm的实时性来说,Spark Streaming甚至只能说是准实时的 But,S…
Spark基础学习精髓 1 Spark与大数据 1.1 大数据基础 1.1.1 大数据特点 存储空间大 数据量大 计算量大 1.1.2 大数据开发通用步骤及其对应的技术 大数据采集->大数据预处理->大数据存储->大数据处理->大数据可视化 (1)大数据采集技术 分布式架构.多种采集技术混合使用 web数据采集:shell编程.爬虫工具.爬虫程序开发.HTTP协议.TCP/IP基本原理及Socket程序接口.编程语言.数据格式转换.分布式存储的命令和接口(HDFS.HBase等).…
Apache Spark是一种快速通用的集群计算系统. 它提供Java,Scala,Python和R中的高级API,以及支持通用执行图的优化引擎. 它还支持一组丰富的高级工具,包括用于SQL和结构化数据处理的Spark SQL,用于机器学习的MLlib,用于图形处理的GraphX和Spark Streaming. Spark优点: 减少磁盘I/O:随着实时大数据应用越来越多,Hadoop作为离线的高吞吐.低响应框架已不能满足这类需求.HadoopMapReduce的map端将中间输出和结果存储在…
第1章 Spark 概述1.1 什么是 Spark1.2 Spark 特点1.3 Spark 的用户和用途第2章 Spark 集群安装2.1 集群角色2.2 机器准备2.3 下载 Spark 安装包2.4 配置 Spark Standalone 模式2.5 配置 Spark History Server2.6 配置 Spark HA2.7 配置 Spark Yarn 模式第3章 执行 Spark 程序3.1 执行第一个 spark 程序3.2 Spark 应用提交3.3 Spark shell3…
知识点 SQL 基本概念 SQL Context 的生成和使用 1.6 版本新API:Datasets 常用 Spark SQL 数学和统计函数 SQL 语句 Spark DataFrame 文件保存 实验步骤      Spark SQL 是Spark 中用于处理结构化数据的模块.它与基本的Spark RDD API 不同的地方在于其接口提供了更多关于结构化数据的信息,能够更好地应用于计算过程.这些额外的信息也能够帮助系统进行优化,从而提高计算的性能.            这个体系中,Dat…
数据本地性 数据计算尽可能在数据所在的节点上运行,这样可以减少数据在网络上的传输,毕竟移动计算比移动数据代价小很多.进一步看,数据如果在运行节点的内存中,就能够进一步减少磁盘的I/O的传输.在spark中,数据本地性优先级从高到低为PROCESS_LOCAL>NODE_LOCAL>NO_PREF>RACK_LOACL>ANY即最好是运行在节点内存中的数据,次要是同一个NODE,再次是同机架,最后是任意位置.        PROCESS_LOCAL   进程本地化:task要计算的…
Spark基础 什么是spark 也是一个分布式的并行计算框架 spark是下一代的map-reduce,扩展了mr的数据处理流程. Spark架构原理图解 RDD[Resilient Distributed Dataset] 它是一个弹性分布式数据集,具有良好的通用性.容错性与并行处理数据的能力,为用户屏蔽了底层对数据的复杂抽象和处理,为用户提供了一组方便的数据转换与求值方法. 弹性 存储弹性:n内存与磁盘d额自动切换 容错弹性:数据丢失可以自动恢复 计算的弹性:计算出错重试机制 分片弹性:根…
02.体验Spark shell下RDD编程 1.Spark RDD介绍 RDD是Resilient Distributed Dataset,中文翻译是弹性分布式数据集.该类是Spark是核心类成员之一,是贯穿Spark编程的始终.初期阶段,我们可以把RDD看成是Java中的集合就可以了,在后面的章节中会详细讲解RDD的内部结构和工作原理. 2.Spark-shell下实现对本地文件的单词统计 2.1思路 word count是大数据学习的经典案例,很多功能实现都可以归结为是word count…
Spark学习之RDD编程(2) 1. Spark中的RDD是一个不可变的分布式对象集合. 2. 在Spark中数据的操作不外乎创建RDD.转化已有的RDD以及调用RDD操作进行求值. 3. 创建RDD:1)读取一个外部数据集2)在驱动器程序里分发驱动器程序中的对象集合. 4. RDD支持的操作: 1)转换操作,由一个RDD生成一个新的RDD. 2)行动操作,对RDD进行计算结果,并把结果返回到驱动器程序中,或者把结果存储到外部存储系统(如HDFS). 5. Spark程序或者shell会话都会…
原文引自:http://blog.sina.com.cn/s/blog_628cc2b70102w9up.html 一.初始化SparkContext System.setProperty("hadoop.home.dir", "D:\\spark-1.6.1-bin-hadoop2.6\\spark-1.6.1-bin-hadoop2.6"); SparkConf conf = new SparkConf().setAppName("spark test…
0.前言 0.1  分布式运算框架的核心思想(此处以MR运行在yarn上为例)  提交job时,resourcemanager(图中写成了master)会根据数据的量以及工作的复杂度,解析工作量,从而产生任务(有多少个MapTask以及多少个ReduceTask),然后根据各个nodemanage节点资源情况进行任务划分.最后得到结果存入hdfs中或者是数据库中 注意:由图可知,map任务和reduce任务在不同的节点上,那么reduce是如何获取经过map处理的数据呢?======>shuff…
mesos集群部署参见上篇. 运行在mesos上面和 spark standalone模式的区别是: 1)stand alone 需要自己启动spark master 需要自己启动spark slaver(即工作的worker) 2)运行在mesos 启动mesos master 启动mesos slaver 启动spark的 ./sbin/start-mesos-dispatcher.sh -m mesos://127.0.0.1:5050 配置spark的可执行程序的路径(也就是mesos里…
本文翻自官方博客,略有添加:https://github.com/mesos/spark/wiki/Spark-Programming-Guide Spark发指南 从高的面看,其实每一个Spark的用,都是一个Driver类,通运行用户定义的main函,在集群上行各种并发操作和算 Spark提供的最主要的抽象,是一个性分布式据集(RDD),它是一种特殊集合,可以分布在集群的点上,以函式程操作集合的方式,行各种各样的并发操作.它可以由hdfs上的一个文件建而,或者是Driver程序中,从一个已经…
spark 2.1.1 最近spark任务(spark on yarn)有一个报错 Diagnostics: Container [pid=5901,containerID=container_1542879939729_30802_01_000001] is running beyond physical memory limits. Current usage: 11.0 GB of 11 GB physical memory used; 12.2 GB of 23.1 GB virtual…
Spark2.1.1 一 Spark Submit本地解析 1.1 现象 提交命令: spark-submit --master local[10] --driver-memory 30g --class app.package.AppClass app-1.0.jar 进程: hadoop 225653 0.0 0.0 11256 364 ? S Aug24 0:00 bash /$spark-dir/bin/spark-class org.apache.spark.deploy.SparkS…