官网地址: https://www.mindspore.cn/install 所有依赖环境 进行sudo make install 安装,最终报错: 错误记录信息: cat     /tmp/mindspore/build/mindspore/CMakeFiles/CMakeError.log Performing C SOURCE FILE Test CMAKE_HAVE_LIBC_PTHREAD failed with the following output:Change Dir: /tm…
题外话:Linux内核从2.x和3.x到现在最新的4.x变化非常大,最直观的表现就是很多书上的内核代码已经无法直接继续使用,所以看看新的源码是非常有意义的! (下文中的内核源码都来自于 kernel 4.0.4 版本,本人都验证过正确,正文假设读者对 linux系统下mount命令有操作经验.另外,linux内核源码中关于文件操作的代码量比内存管理或者设备管理多了不止一个数量级,所以想要把每一 个地方完全说清楚是远在我能力之外的..这篇文章的意义就是帮助建立起来一个超级块,索引和目录的有层次的模…
对于许多科学家.工程师和开发人员来说,TensorFlow是他们的第一个深度学习框架.TensorFlow 1.0于2017年2月发布,可以说,它对用户不太友好. 在过去的几年里,两个主要的深度学习库Keras和Pytorch获得了大量关注,主要是因为它们的使用比较简单. 本文将介绍Keras与Pytorch的4个不同点以及为什么选择其中一个库的原因. Keras Keras本身并不是一个框架,而是一个位于其他深度学习框架之上的高级API.目前它支持TensorFlow.Theano和CNTK.…
以下为在CentOS-6.4下hadoop-1.2.0源码编译步骤. 1. 安装并且配置ant 下载ant,将ant目录下的bin文件夹加入到PATH变量中. 2. 安装git,安装autoconf,安装automake,安装libtool 3. 修改saveVersion.sh文件 修改hadoop工程目录src目录下的saveVersion.sh文件,将user=‘whoami’中的‘whoami’改为实际的名字(如我的名字maybob,则改为:user=maybob). 4. 执行ant编…
本文为微信公众号[深度学习大讲堂]特约稿,转载请注明出处 虚拟框架杀入 从发现问题到解决问题 半年前的这时候,暑假,我在SIAT MMLAB实习. 看着同事一会儿跑Torch,一会儿跑MXNet,一会儿跑Theano. SIAT的服务器一般是不给sudo权限的,我看着同事挣扎在编译这一坨框架的海洋中,开始思考: 是否可以写一个框架: import xx.tensorflow as tensorflow import xx.mxnet as mxnet import xx.theano as th…
深度学习框架caffe特点,富有表达性.快速.模块化.下面介绍caffe如何在Ubuntu上编译安装. 1. 前提条件 安装依赖的软件包: CUDA 用来使用GPU模式计算. 建议使用 7.0 以上最新的版本 BLAS via ATLAS, MKL, or OpenBLAS. Boost >= 1.55 protobuf, glog, gflags, hdf5 可选依赖软件包: OpenCV >= 2.4 including 3.0 IO libraries: lmdb, leveldb (n…
深度学习框架-caffe安装 [Mac OSX 10.12] [参考资源] 1.英文原文:(使用GPU) [http://hoondy.com/2015/04/03/how-to-install-caffe-on-mac-os-x-10-10-for-dummies-like-me/] 2.基于1的两篇中文博客: [http://ylzhao.blogspot.kr/2015/04/mac-os-x-1010caffe.html][http://www.jianshu.com/p/8795b88…
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px ".PingFang SC"; color: #454545 } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Helvetica Neue"; color: #454545 } p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "He…
一个可扩展的深度学习框架的Python实现(仿keras接口) 动机 keras是一种非常优秀的深度学习框架,其具有较好的易用性,可扩展性.keras的接口设计非常优雅,使用起来非常方便.在这里,我将仿照keras的接口,设计出可扩展的多层感知机模型,并在多维奇偶校验数据上进行测试. 本文实现的mlp的可扩展性在于:可以灵活指定神经网络的层数,每层神经元的个数,每层神经元的激活函数,以及指定神经网络的损失函数 本文将尽量使用numpy的矩阵运算用于训练网络,公式的推导过程可以参考此篇博客,细节上…
引言:AlphaGo在2017年年初化身Master,在弈城和野狐等平台上横扫中日韩围棋高手,取得60连胜,未尝败绩.AlphaGo背后神秘的推动力就是TensorFlow--Google于2015年11月开源的机器学习及深度学习框架.  TensorFlow在2015年年底一出现就受到了极大的关注,在一个月内获得了GitHub上超过一万颗星的关注,目前在所有的机器学习.深度学习项目中排名第一,甚至在所有的Python项目中也排名第一.本文将带我们简单了解下TensorFlow,并与其他主流深度…
DIGITS: Deep Learning GPU Training System1,是由英伟达(NVIDIA)公司开发的第一个交互式深度学习GPU训练系统.目的在于整合现有的Deep Learning开发工具,实现深度神经网络(Deep Neural Network,DNN)设计.训练和可视化等任务变得简单化.DIGITS是基于浏览器的接口,因而通过实时的网络行为的可视化,可以快速设计最优的DNN.DIGITS是开源软件,可在GitHub上找到,因而开发人员可以扩展和自定义DIGITS. Gi…
本系列为Tensorflow实战Google深度学习框架知识笔记,仅为博主看书过程中觉得较为重要的知识点,简单摘要下来,内容较为零散,请见谅. 2017-11-06 [第五章] MNIST数字识别问题 1. MNIST数据处理 为了方便使用,Tensorflow提供了一个类来处理MNIST数据,这个类会自动下载并转化MNIST数据的格式,将数据从原始的数据包中解析成训练和测试神经网络时使用的格式. 2. 神经网络模型训练及不同模型结果对比 为了评测神经网络模型在不同参数下的效果,一般会从训练数据…
目录 三.TensorFlow入门 1. TensorFlow计算模型--计算图 I. 计算图的概念 II. 计算图的使用 2.TensorFlow数据类型--张量 I. 张量的概念 II. 张量的使用 3.会话 4.TensorFlow实现神经网络 I. 前向传播算法 II. 神经网络参数与TensorFlow变量 III. 用TF训练神经网络 四.深层神经网络 1. 深度学习与深度神经网络 I. 线性模型的局限性 II. Activation去线性化 III. 多层网络解决异或运算 2. L…
开源的深度学习神经网络正步入成熟,而现在有许多框架具备为个性化方案提供先进的机器学习和人工智能的能力.那么如何决定哪个开源框架最适合你呢?本文试图通过对比深度学习各大框架的优缺点,从而为各位读者提供一个参考.你最看好哪个深度学习框架呢? 现在的许多机器学习框架都可以在图像识别.手写识别.视频识别.语音识别.目标识别和自然语言处理等许多领域大展身手,但却并没有一个完美的深度神经网络能解决你的所有业务问题.所以,本文希望下面的图表和讲解能够提供直观方法,帮助读者解决业务问题. 下图总结了在 GitH…
人工智能深度学习框架MXNet实战:深度神经网络的交通标志识别训练 MXNet 是一个轻量级.可移植.灵活的分布式深度学习框架,2017 年 1 月 23 日,该项目进入 Apache 基金会,成为 Apache 的孵化器项目.尽管现在已经有很多深度学习框架,包括 TensorFlow, Keras, Torch,以及 Caffe,但 Apache MXNet 因其对多 GPU 的分布式支持而越来越受欢迎. 环境准备1.安装 Anaconda.Anaconda 是一个用于科学计算的 Python…
https://blog.csdn.net/a819825294/article/details/51334397 1.介绍 Keras是基于Theano的一个深度学习框架,它的设计参考了Torch,用Python语言编写,是一个高度模块化的神经网络库,支持GPU和CPU.keras官方文档地址 地址 2.流程 先使用CNN进行训练,利用Theano函数将CNN全连接层的值取出来,给SVM进行训练 3.结果示例 因为这里只是一个演示keras&SVM的demo,未对参数进行过多的尝试,结果一般…
还未完全写完,本人会一直持续更新!~ 各大深度学习框架总结和比较 各个开源框架在GitHub上的数据统计,如下表: 主流深度学习框架在各个维度的评分,如下表: Caffe可能是第一个主流的工业级深度学习工具,它开始于2013年底,具有出色的卷积神经网络实现.在计算机视觉领域Caffe依然是最流行的工具包,它有很多扩展,但是由于一些遗留的架构问题,它对递归网络和语言建模的支持很差.此外,在Caffe中图层需要使用C++定义,而网络则使用Protobuf定义. CNTK由深度学习热潮的发起演讲人创建…
Caffe 深度学习框架上手教程   blink 15年1月   Caffe (CNN, deep learning) 介绍 Caffe -----------Convolution Architecture For Feature Embedding (Extraction) Caffe 是什么东东? CNN (Deep Learning) 工具箱 C++ 语言架构 CPU 和GPU 无缝交换 Python 和matlab的封装 但是,Decaf只是CPU 版本. 为什么要用Caffe? 运算…
本来以为很好安装的一个东西,硬是从晚上九点搞到十二点,安装其实并不难,主要是目前网上的教程有很多方案完全不一样,有根据pip安装的,有根据docker安装的等等,看得我眼花缭乱,好不容易找到一个靠谱点的,各项参数都给略过了,我安装时算是踩了不少坑,现在成功安装,回忆一下过程并整理出来,希望对想入门深度学习框架的朋友有帮助,最起码不要在门槛上被恶心. 为了能够快速的安装组件,请先将镜像源地址改为清华镜像站地址,我在安装时只更改了Anaconda仓库地址:https://mirrors.tuna.t…
学习过程是Tensorflow 实战google深度学习框架一书的第六章的迁移学习环节. 具体见我提出的问题:https://www.tensorflowers.cn/t/5314 参考https://blog.csdn.net/zhuiqiuk/article/details/53376283后,对代码进行了修改. 问题的跟踪情况记录: 1 首先是保存模型: import tensorflow as tf from tensorflow.python.framework import grap…
机器之心报道 本文首先介绍GitHub中最受欢迎的开源深度学习框架排名,然后再对其进行系统地对比 下图总结了在GitHub中最受欢迎的开源深度学习框架排名,该排名是基于各大框架在GitHub里的收藏数,这个数据由MitchDeFelice在2017年5月初完成. TensorFlow 地址:https://www.tensorflow.org/ TensorFlow最开始是由谷歌一个称之为DistBeliefV2的库发展而来,它是一个公司内部的深度神经网络库,隶属于谷歌大脑项目.有一些人认为Te…
http://geek.csdn.net/news/detail/138968 Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自TensorFlow于2015年底正式开源,距今已有一年多,这期间TensorFlow不断给人以惊喜.在这一年多时间,TensorFlow已从初入深度学习框架大战的新星,成为了几近垄断的行业事实标准.本文节选自<TensorFlow实战>第二章. 主流深度学习框架对比 深度学习研究的热潮持续高涨,各种开源…
http://geek.csdn.net/news/detail/139235 说到近期的深度学习框架,TensorFlow火的不得了,虽说有专家在朋友圈大声呼吁,不能让TensorFlow形成垄断地位,但对于开发者来说,该学的东西还是要学的. 今天的播报涉及三篇TensorFlow相关技术文章.若您想要了解更多,点击题目(蓝色大字)阅读原文. 一.从TensorFlow到Theano:横向对比七大深度学习框架 在深度学习项目开始前,选择一个合适的框架是非常重要的事情.最近,来自数据科学公司 S…
在学习陈云的教程<深度学习框架PyTorch:入门与实践>的损失函数构建时代码如下: 可我运行如下代码: output = net(input) target = Variable(t.arange(0,10)) criterion = nn.MSELoss() loss = criterion(output, target) loss 运行结果: RuntimeError Traceback (most recent call last) <ipython-input-37-e5c73…
TensorFlow是一个采用数据流图(data flow graphs),用于数值计算的开源软件库,说白了,就是一个库. 小编自己在Ubuntu搭建了深度学习框架TensorFlow,感觉挺简单,现在总结如下. 1.安装Anaconda 在ubuntu系统版本的Anaconda3已经集成了3.6版本的Python,安装步骤如下: a.下载Anoconda3 b.安装:以下操作在系统终端执行 输入yes: 默认安装位置 将Anconda的安装路径添加到环境变量中去,点yes,然后静静等待安装.…
一.TensorFlow实战Google深度学习框架学习 1.步骤: 1.定义神经网络的结构和前向传播的输出结果. 2.定义损失函数以及选择反向传播优化的算法. 3.生成会话(session)并且在训练数据上反复运行反向传播优化算法. 2.代码: 来源:https://blog.csdn.net/longji/article/details/69472310 import tensorflow as tf from numpy.random import RandomState # 1. 定义神…
TensorFlow是谷歌2015年开源的主流深度学习框架,目前已得到广泛应用.<TensorFlow:实战Google深度学习框架(第2版)>为TensorFlow入门参考书,帮助快速.有效的方式上手TensorFlow和深度学习.书中省略了烦琐的数学模型推导,从实际应用问题出发,通过具体的TensorFlow示例介绍如何使用深度学习解决实际问题.书中包含深度学习的入门知识和大量实践经验,是走进这个前沿.热门的人工智能领域的优选参考书. 第2版将书中所有示例代码从TensorFlow 0.9…
关于计算机的硬件配置说明 推荐配置 如果您是高校学生或者高级研究人员,并且实验室或者个人资金充沛,建议您采用如下配置: 主板:X299型号或Z270型号 CPU: i7-6950X或i7-7700K 及其以上高级型号 内存:品牌内存,总容量32G以上,根据主板组成4通道或8通道 SSD: 品牌固态硬盘,容量256G以上 显卡:NVIDIA GTX TITAN(XP) NVIDIA GTX 1080ti.NVIDIA GTX TITAN.NVIDIA GTX 1080.NVIDIA GTX 107…
20 个顶尖的 Python 机器学习开源项目 机器学习 2015-06-08 22:44:30 发布 您的评价: 0.0 收藏 1收藏 我们在Github上的贡献者和提交者之中检查了用Python语言进行机器学习的开源项目,并挑选出最受欢迎和最活跃的项目.” 图1:在GitHub上用Python语言机器学习的项目,图中颜色所对应的Bob, Iepy, Nilearn, 和NuPIC拥有最高的价值. 1. Scikit-learn www.github.com/scikit-learn/scik…
一.前言 由于前一段时间以及实现了基于keras深度学习框架下yolov3的算法,本来想趁着余热将自己的心得体会进行总结,但由于前几天有点事就没有完成计划,现在趁午休时间整理一下. 二.Keras框架的介绍 1.Keras是一个用Python编写的高级API,它提供了一个简单和模块化的API来创建和训练神经网络,同时也隐藏了大部分复杂的细节.其能够在TensorFlow.Theano或CNTK上运行. 2.keras的模型结构 常用模型有:序贯模型(Sequential)和函数式模型(Model…