题意:       给你一串珠子(连接成了一个环),共有n个珠子组成,你有t种颜色,现在你来给这个珠子染色,问染成项链有多少种方法?染成手镯有多少种方法?在项链里,经过顺时针旋转后相同的算一个,在手镯里,经过顺时针旋转或者沿着对称轴兑换后一样的算一个. 思路:       比较典型的等价类计数问题,我们定义两个变量,a是旋转的总个数,b是翻转的总个数,那么根据Burnside和Polya定理,a = C[0] + C[1] + C[2] +..+C[n-1]; C[i]表示的是顺时针移动i个后的…
https://vjudge.net/problem/UVA-10294 题意: 手镯可以翻转,但项链不可以.输入n和t,输出用t种颜色的n颗珠子能制作成的项链和手镯的个数. 思路: 经典等价类计数问题. 对应题目的翻转问题,分奇偶讨论. 奇数时,如题图右,对称轴是一个珠子到圆心的连线,一共n条.选定对称轴后,对称轴上的一个珠子构成一个循环,其他n-1个珠子分别以对称轴对称构成(n-1)/2个循环,所以循环节的个数是 1 + (n – 1) / 2 = (n + 1) / 2 . 偶数时,如题图…
题意 项链和手镯都是由若干珠子串成的环形首饰,区别在于手环可以翻转,但项链不可以. 输入整数 $n$ 和 $t$,输出用 $t$ 中颜色 $n$ 颗珠子能制作成的项链和手镯的个数.($1\leq n \leq 50, 1 \leq t\leq 10$). 分析 这里共有两种置换,即旋转和翻转,项链只有其中一种,而手镯两种都有. 旋转:如果逆时针旋转 $i$ 颗珠子的间距,则 $0,i,2i,...$ 构成一个循环(大于 $n$ 时模 $n$),这个循环有 $n/gcd(i,n)$ 个元素.根据对…
Burnside引理:对于一个置换\(f\), 若一个着色方案\(s\)经过置换后不变,称\(s\)为\(f\)的不动点.将\(f\)的不动点数目记为\(C(f)\), 则可以证明等价类数目为\(C(f)\) 的平均值. 也就是对于置换群中的某一个置换\(f\),\(C(f)\)为所有着色方案中,那些经过置换\(f\) 可以互相转换(即等价)的着色方案数 因为一个置换可以拆成若干个循环,置换中的每个元素可以看成是一个结点,那么每个节点必有一个出度和入度,所以肯定会形成若干个环,在置换\(f\)…
置换群.Burnside引理与等价类计数问题 标签: 置换群 Burnside引理 置换 说说我对置换的理解,其实就是把一个排列变成另外一个排列.简单来说就是一一映射.而置换群就是置换的集合. 比如\[ \left(\begin{array}1 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 4 & 2 & 1 \end{array}\right) \]是一个置换.也可以把置换看做定义域和值域都为{1,2,......,n}的函数,…
零.约定: (置换等名词会在前置知识中有解释) \(1.\)在本文中,题目要求的染色方案等统称为"元素". \(2.\)两个元素严格相等我们记做"\(=\)",两个元素等价(按题目所给的置换可以互相得到)我们记做"\(\Leftrightarrow\)". \(3.\)元素\(a\)进行置换\(g\)我们记做\(a\otimes g\). \(4.\)置换之间的乘积记做\(\odot\),\(g_i=g_j\odot g_k\),当且仅当\(\f…
题目大意: 项链和手镯都是若干珠子穿成的环形首饰,手镯可以旋转和翻转,但项链只能旋转,给n个珠子,t种颜色,求最后能形成的手镯,项链的数量 这里根据等价类计数的polya定理求解 对于一个置换f,若一种方案经过置换后不改变,那么不改变的点的个数记作C(f) 统计所有的C(f) , 相加之后求和除以置换的种数即可 那么这道题里面 对于项链来说,旋转一个角度,也就是2*PI/n , 那么置换群可表示为 1 2 3 4 .... n 2 3 4 5 ... 1 这里就存在一个循环节 所以方案数为 t^…
[Uva10294]Arif in Dhaka 标签: 置换 Burnside引理 题目链接 题意 有很多个珠子穿成环形首饰,手镯可以翻转和旋转,项链只能旋转.(翻转过的手镯相同,而项链不同) 有n个珠子,k种颜色,输出不同的项链和手镯的个数. 题解 先考虑旋转的置换: 假如旋转i颗珠子,那么显然产生的循环节个数为gcd(i,n),那么就可以做了. 考虑翻转的置换: 首先可以知道,如果先旋转再翻转,肯定可以找到某一种翻转的置换与之等价. 那么假如珠子的个数为奇数,可以得到(n/2)个长度为2的循…
UVA10294 Arif in Dhaka (群论,Polya定理) 题意 : 给你一个长为\(n\)的项链和手镯,每个珠子有\(m\)种颜色. 两个手镯定义为相同,即它们通过翻转和旋转得到一样的手镯. 两个项链定义为相同,即它们只能通过旋转得到一样的项链. 求出有多少种本质不同的项链和手镯. \((1 \le n \le 50, 1 \le m \le 10)\) 题解 : (参考了一下这篇大佬博客) 大白书上的原题,一个裸的Polya定理(逃 Polya定理 : \[L=\frac{1}{…
题意 PDF 分析 用n颗宝石串成项链和手镯, 每颗宝石的颜色可以t种颜色中的一种,当A类项链经过旋转得B类项链时,A和B属于一类项链, 而手镯不仅可以旋转还可以翻转,当A类手镯经过翻转得得到B类手镯时A和B属于一类手镯,问这n颗宝石,t种颜色,可以串成多少种项链和手镯? 解法: 首先将n颗宝石按顺时针方向编号1,2,3,4,5,6......n 旋转,当顺时针旋转i颗宝石时, 可以得到一个置换,且这个置换的个数为 (n*i)/gcd(n,i)/i ;由对称性可知 每个循环的阶均相同,故共有gc…