在深度神经网络的分布式训练中,梯度和参数同步时的网络开销是一个瓶颈.本文提出了一个名为TernGrad梯度量化的方法,通过将梯度三值化为\({-1, 0, 1}\)来减少通信量.此外,本文还使用逐层三值化和梯度裁剪加速算法的收敛. 在传统的数据并行SGD的每次迭代\(t\)中,训练数据会被分成\(N\)份以供\(N\)个工作节点进行训练.工作节点\(i\)根据输入样本\(z_t^{(i)}\)计算参数的梯度\(\boldsymbol{g}_t^{(i)}\),之后,工作节点将梯度发送给参数服务器…
Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance 2018-12-19 13:02:45 This blog is copied from: https://machinelearningmastery.com/ensemble-methods-for-deep-learning-neural-networks/ Deep learning neural ne…
最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28nm for Intelligent Embedded Systems 单位:STMicroelectronics(意法半导体) 这是一篇很综合芯片SOC设计,总体架构如下: 本文采用的DSP簇作为加速阵列,包含8个DSP簇,每簇内含2个3…
最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28nm for Intelligent Embedded Systems 单位:STMicroelectronics(意法半导体) 这是一篇很综合芯片SOC设计,总体架构如下: 本文采用的DSP簇作为加速阵列,包含8个DSP簇,每簇内含2个3…
由于良好的可扩展性,随机梯度下降(SGD)的并行实现是最近研究的热点.实现并行化SGD的关键障碍就是节点间梯度更新时的高带宽开销.因此,研究者们提出了一些启发式的梯度压缩方法,使得节点间只传输压缩后的梯度.尽管这些启发式方法在实践中很有效,但它们有时并不会收敛. 本文提出了量化SGD(Quantization SGD,QSGD),它是一类具有收敛保证且在实践中性能良好的压缩模式.QSGD允许用户平滑得权衡通信带宽和收敛时间:节点可以在每轮迭代时调整发送的比特数,代价可能是更高的方差.这种权衡是固…
通过将分布式随机梯度下降(SGD)中的稠密更新替换成稀疏更新可以显著提高训练速度.当大多数更新接近于0时,梯度更新会出现正偏差,因此我们将99%最小更新(绝对值)映射为零,然后使用该稀疏矩阵替换原来的稠密矩阵.该方法可以于梯度量化相结合来进一步压缩梯度.我们探索了不同的的参数配置并将它们应用到神经机器翻译和MNIST图像分类任务中.大多数参数配置适用于MNIST,而不同的配置会降低更复杂的翻译任务的收敛速度.我们的实验说明在不损失精度和BLEU的情况下,可以在MNIST任务上获得49%的加速比,…
1. 深度学习面临的问题: 1)模型越来越大,很难在移动端部署,也很难网络更新. 2)训练时间越来越长,限制了研究人员的产量. 3)耗能太多,硬件成本昂贵. 解决的方法:联合设计算法和硬件. 计算硬件可以分为通用和专用两大类.通用硬件又可以分为CPU和GPU.专用硬件可以分为(FPGA和ASIC,ASIC更高效,谷歌的TPU就是ASIC). 2. Algorithms for Efficient Inference 1)Pruning,修剪掉不那么重要的神经元和连接.第一步,用原始的网络训练:第…
转载请注明,本文出自Bin的专栏http://blog.csdn.net/xbinworld,谢谢! DNPU: An 8.1TOPS/W Reconfigurable CNN-RNN Processor for General-Purpose Deep Neural Networks 单位:KAIST(韩国科学技术院,电子工程-半导体系统实验室) KAIST是ISSCC的常客,一年要在上面发好几篇芯片论文,16年ISSCC上Session 14有一半的paper是出自KAIST的,只能说怎一个…
讲课嘉宾是Song Han,个人主页 Stanford:https://stanford.edu/~songhan/:MIT:https://mtlsites.mit.edu/songhan/. 1. 深度学习面临的问题: 1)模型越来越大,很难在移动端部署,也很难网络更新. 2)训练时间越来越长,限制了研究人员的产量. 3)耗能太多,硬件成本昂贵. 解决的方法:联合设计算法和硬件. 计算硬件可以分为通用和专用两大类.通用硬件又可以分为CPU和GPU.专用硬件可以分为(FPGA和ASIC,ASI…
1. CPU vs. GPU: CPU核心少(几个),更擅长串行任务.GPU有很多核心(几千个),每一个核都弱,有自己的内存(几个G),很适合并行任务.GPU最典型的应用是矩阵运算. GPU编程:1)CUDA,只能在英伟达:2)OpenCL类似CUDA,好处是可以跑在任何平台上,但相对慢一些.深度学习可以直接调用现成的库,不用自己写CUDA代码. 用cuDNN比不用快几倍. 深度学习的瓶颈可能不在GPU的运算,而在GPU和数据的通信上,解决办法是:1)把数据读入RAM:2)用SSD而不是HDD:…