Stadie, Bradly C., Sergey Levine, and Pieter Abbeel. "Incentivizing exploration in reinforcement learning with deep predictive models." arXiv preprint arXiv:1507.00814 (2015). 作者通过模拟(状态,动作)的不确定性,从而修改reward,帮助agent进行探索.作者说用了他们的方法不用进行随机探索.该方法比较通用,…
Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. The papers are organized based on manually-defined bookmarks. They are sorted by time to see the recent papers first. Any suggestions and pull requests…
MIT(Deep Learning for Self-Driving Cars) CMU(Deep Reinforcement Learning and Control ) 参考网址: 1 Deep Learning for Self-Driving Cars  --  6.S094 http://selfdrivingcars.mit.edu/ 2 Deep Reinforcement Learning and Control  --  10703 https://katefvision.gi…
深度强化学习的18个关键问题 from: https://zhuanlan.zhihu.com/p/32153603 85 人赞了该文章 深度强化学习的问题在哪里?未来怎么走?哪些方面可以突破? 这两天我阅读了两篇篇猛文A Brief Survey of Deep Reinforcement Learning 和 Deep Reinforcement Learning: An Overview ,作者排山倒海的引用了200多篇文献,阐述强化学习未来的方向.原文归纳出深度强化学习中的常见科学问题,…
  Deep Learning Research Review Week 2: Reinforcement Learning 转载自: https://adeshpande3.github.io/adeshpande3.github.io/Deep-Learning-Research-Review-Week-2-Reinforcement-Learning This is the 2nd installment of a new series called Deep Learning Resea…
Byte Tank Posts Archive Deep Reinforcement Learning: Playing a Racing Game OCT 6TH, 2016 Agent playing Out Run, session 201609171218_175epsNo time limit, no traffic, 2X time lapse Above is the built deep Q-network (DQN) agent playing Out Run, trained…
Deep Learning in a Nutshell: Reinforcement Learning   Share: Posted on September 8, 2016by Tim Dettmers No CommentsTagged Deep Learning, Deep Neural Networks, Machine Learning,Reinforcement Learning This post is Part 4 of the Deep Learning in a Nutsh…
Andrej Karpathy blog About Hacker's guide to Neural Networks Deep Reinforcement Learning: Pong from Pixels May 31, 2016 This is a long overdue blog post on Reinforcement Learning (RL). RL is hot! You may have noticed that computers can now automatica…
Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很多共同的 idea:一个 online 的 agent 碰到的观察到的数据序列是非静态的,然后就是,online的 RL 更新是强烈相关的.通过将 agent 的数据存储在一个 experience replay 单元中,数据可以从不同的时间步骤上,批处理或者随机采样.这种方法可以降低 non-st…
Deep Reinforcement Learning with Double Q-learning Google DeepMind Abstract 主流的 Q-learning 算法过高的估计在特定条件下的动作值.实际上,之前是不知道是否这样的过高估计是 common的,是否对性能有害,以及是否能从主体上进行组织.本文就回答了上述的问题,特别的,本文指出最近的 DQN 算法,的确存在在玩 Atari 2600 时会 suffer from substantial overestimation…