[输入] 一行两个整数 n P [输出] 从小到大输出可能的 k,若不存在,输出 None [样例输入 1] 5 5 [样例输出] 2 [样例解释] f[0] = 2 f[1] = 2 f[2] = 4 f[3] = 6 mod 5 = 1 f[4] = 5 mod 5 = 0 f[5] = 1 30%的数据保证 n, P ≤ 1000 100%的数据保证 n, P ≤ 10^9 一道算是比较综合的数论题吧,感觉不是很难. 先用矩阵快速幂求出k=1时f[n]的值. 然后解一个k*f[n]+x*p…
题目 给定矩阵A, B和模数p,求最小的正整数x满足 A^x = B(mod p). 分析 与整数的离散对数类似,只不过普通乘法换乘了矩阵乘法. 由于矩阵的求逆麻烦,使用 $A^{km-t} = B(mod \ p)$ 形式的BSGS. 然后就是判断矩阵是否相等, 一种方法是对矩阵进行Hash, 这里为了防止两个不同矩阵的Hash值冲突,使用了两个底数进行Hash. #include<bits/stdc++.h> using namespace std; typedef long long l…
昨天这题死活调不出来结果是一个地方没取模,凉凉. 首先有个一眼就能看出来的规律... 斐波那契数列满足$a_1, a_2, a_1+a_2, a_1+2a_2, 2a_1+3a_2, 3a_1+5a_2$ 也就是第k项是$fib(k-2)*a_1+fib(k-1)*a_2$ 问题就转化成了求$(fib(k-2)*a_1+fib(k-1)*a_2)\% p=m$,$a_2$在$[l,r]$上的个数. 显然$fib(k-2)a_1$是个常数,那一看就是exgcd题了... 令$a=fib(k-1),…
2014多校第一题,当时几百个人交没人过,我也暴力交了几发,果然不行. 比完了去学习了BSGS才懂! 题目:http://acm.hdu.edu.cn/showproblem.php?pid=4887 Endless Punishment Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 52    Accepted Submissi…
首先矩阵快速幂可以算出来第k项的指数,然后可以利用原根的性质,用bsgs和exgcd把答案解出来 #include<bits/stdc++.h> using namespace std; typedef long long ll; const ll N = 1e2 + 10; const ll Mod = 998244353; ll add(ll a, ll b, ll mod = Mod) { return (a += b) >= mod ? a - mod : a; } ll sub…
https://codeforces.com/contest/1106/problem/F 题意 数列公式为\(f_i=(f^{b_1}_{i-1}*f^{b_2}_{i-2}*...*f^{b_k}_{i-k})\)mod\(P\),给出\(f_{1}...f_{k-1}\)和\(f_{n}\),求\(f_{k}\),其中\(P\)等于998244353 题解 3是998244353的离散对数,所以\(f^{b_1}_{i-1} \equiv 3^{h_i*b_1}(modP)\),怎么求离散…
题面 传送门 前置芝士 \(BSGS\) 什么?你不会\(BSGS\)?百度啊 原根 对于素数\(p\)和自然数\(a\),如果满足\(a^x\equiv 1\pmod{p}\)的最小的\(x\)为\(p-1\),那么\(a\)就是\(p\)的一个原根 离散对数 对于素数\(p\),以及\(p\)的一个原根\(g\),定义\(y\)为\(x\)的离散对数,当且仅当\(g^y\equiv x\pmod{p}\),记\(y\)为\(ind_g x\).不难发现原数和离散对数可以一一对应.也不难发现离…
传送门 好久没写数论题了写一次调了1h 首先发现递推式是一个乘方的形式,线性递推和矩阵快速幂似乎都做不了,那么是否能够把乘方运算变成加法运算和乘法运算呢? 使用原根!学过\(NTT\)的都知道\(998244353\)的原根\(G=3\). 使用原根之后,可以得到一个等价的新递推式:\(G^{g_i} = \prod\limits _ {j=1}^k G^{g_{i - j} \times b_j} \mod 998244353(G^{g_i} \equiv f_i\mod 998244353)…
题意 设 $$f_i = \left\{\begin{matrix}1 , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  i < k\\ \prod_{j=1}^k f_{i-j}^{b_j} \ mod \ p, \ \ \ \ \ i > k\end{matrix}\right.$$ 求 $f_k$($1 \leq f_k < p$),使得 $f_m = n$.($1 \leq k\leq 100$) 分析 $f_n$ 可以表示…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4767 题意:求集合{1, 2, 3, ..., n}有多少种划分情况bell[n],最后结果bell[n] mod 95041567. 分析:首先了解三个概念:贝尔数   第二类斯特灵数   中国剩余定理 贝尔数是指基数为n的集合的划分方法的数目. 贝尔数适合递推公式: 每个贝尔数都是"第二类Stirling数"的和 贝尔数满足两个公式:(p为质数)             1) B[n+…
[BZOJ2432][NOI2011]兔农(数论,矩阵快速幂) 题面 BZOJ 题解 这题\(75\)分就是送的,我什么都不想写. 先手玩一下,发现每次每次出现\(mod\ K=1\)的数之后 把它减一,就变成了\(0\).接着后面的数显然还是一个斐波那契数列 只是都乘了\(0\)之前的那个数作为倍数而已. 拿样例举个例子?以下数字都在模\(7\)意义下进行 1 1 2 3 5 0(1) 5 5 3 0(1) 3 3 6 2 0(1) 大概就是这样子. 当然,如果我们继续手玩下去,也许可以发现点…
题意:有N个座位,人可以选座位,但选的座位不能相邻,且旋转不同构的坐法有几种.如4个座位有3种做法.\( 1≤N≤1000000000 (10^9) \). 题解:首先考虑座位不相邻的选法问题,如果不考虑同构,可以发现其种数是一类斐波那契函数,只不过fib(1)是1 fib(2)是3. 由于n很大,所以使用矩阵快速幂来求fib. 再者考虑到旋转同构问题,枚举旋转i (2π/n) 度,其等价类即\( gcd(i, n) \)种,那么可以得\[S(n)=\frac{1}{n}\sum_{d|n}^{…
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Google Codejam Round 1A的C题. #include <bits/stdc++.h> typedef long long ll; const int N = 5; int a, b, n, mod; /* *矩阵快速幂处理线性递推关系f(n)=a1f(n-1)+a2f(n-2)+.…
非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模)   Input 一个数n,表示长度.(n<1e15) Output 长度为n的非010串的个数.(对1e9+7取模) Input示例 3 Output示例 7 解释: 000 001 011 100 101 110 111 读完题,这样的题目肯定是能找到规律所在的,要不然数据太大根本无法算.假设现在…
题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; ; ; int n, m; struct Mat{//矩阵 ll mat[N][N]; }; Mat operator * (Mat a, Mat b){//一次矩阵乘法…
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. 在计算机科学中,二叉树是每个结点最多有两个子结点的有序树.通常子结点被称作“左孩子”和“右孩子”.二叉树被用作二叉搜索树和二叉堆.随后他又和他人讨论起了二叉搜索树.什么是二叉搜索树呢?二叉搜索树首先是一棵二叉树.设key[p]表示结点p上的数值.对于其中的每个结点p,若其存在左孩子lch,则key…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2) = b,求f(n) 思路:对矩阵快速幂的了解仅仅停留在fib上,重现赛自己随便乱推还一直算错,快两个小时才a还wa了好几次.... 主要就是构造矩阵:(n+1)^4 = n^4 + 4n^3 + 6n^2 + 4n + 1 |1   2   1   4   6   4   1|     |  …
有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输入3个数:A,B,N.数字之间用空格分割.(-10000 <= A, B <= 10000, 1 <= N <= 10^9) Output 输出f(n)的值. Input示例 3 -1 5 Output示例 6题意:f(n) = (A * f(n - 1) + B * f(n - 2)…
题目链接:hdu2604 这题重要的递推公式,找到公式就很easy了(这道题和hdu1757(题解)类似,只是这道题需要自己推公式) 可以直接找规律,推出递推公式,也有另一种找递推公式的方法:(PS:在别的博客粘过来,暂时还不太理解...) 设f(n)为字符串长度为n时复合条件的字符串个数,以字符串最后一个字符为分界点,当最后一个字符为m时前n-1个字符没有限制,即为f(n-1):当最后一个字符为f时就必须去除最后3个字符是fmf和fff的情况,在考虑最后两个字符为mf和ff的情况,显然不行:最…
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d      C D   =   c*A+d*C  c*A+d*C 上代码 struct matrix { ll a[maxn][maxn]; }; matrix matrix_mul(matrix x,matrix y) { matrix temp; ;i<=n;i++) ;j<=n;j++) { tem…
http://acm.hdu.edu.cn/showproblem.php?pid=4965 2014 Multi-University Training Contest 9 1006 Fast Matrix Calculation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 238    Accepted Submission(…
So Easy! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2286    Accepted Submission(s): 710 Problem Description A sequence Sn is defined as:Where a, b, n, m are positive integers.┌x┐is the ceil…
http://acm.hdu.edu.cn/showproblem.php?pid=2855 化简这个公式,多写出几组就会发现规律 d[n]=F[2*n] 后面的任务就是矩阵快速幂拍一个斐波那契模板出来了 这里用的是2维 vector #include<iostream> #include<cstdio> #include<vector> using namespace std; typedef vector<int>vec; typedef vector&…
fibonacci数列(二) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, - An alter…
题目链接 题意:有n个猫,开始的时候每个猫都没有坚果,进行k次操作,g x表示给第x个猫一个坚果,e x表示第x个猫吃掉所有坚果,s x y表示第x个猫和第y个猫交换所有坚果,将k次操作重复进行m轮,问最后这n个猫各自有多少坚果. 题解:构造(n+1)*(n+1)的单位矩阵,data[i][j]表示第i个猫与第j个猫进行交换,最后一列的前n项就是每个猫的坚果数目,s操作就交换对应行,矩阵快速幂时间复杂度O(n^3*log2(m))会超时,我们注意到在n*n的范围内每一行只有一个1,利用稀疏矩阵的…
分析:假设g(g(g(n)))=g(x),x可能非常大,但是由于mod 10^9+7,所以可以求出x的循环节 求出x的循环节后,假设g(g(g(n)))=g(x)=g(g(y)),即x=g(y),y也可能非常大,但是由x的循环节可以求出y的循环节 所以最终结果只要进行矩阵快速幂即可求出 循环节 #include<stdio.h> ;//第一次是MOD=1000000007 找出循环节是222222224 //第二次是MOD=222222224,找出循环节183120 int main() {…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2855 题目大意:求$S(n)=\sum_{k=0}^{n}C_{n}^{k}Fibonacci(k)$ 解题思路: 题目挺吓人的.先把完整组合数+Fibonacci展开来. 利用Fibonacci的特性,从第一项开始消啊消,消到只有一个数: $S(0)=f(0)$ $S(1)=f(2)$ $S(2)=f(4)$ $S(n)=f(2*n)$ 这样矩阵快速幂就可以了,特判$n=0$时的情况. 快速幂矩阵…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个环可以取下或放上,cost=1.求最小cost.MOD 200907. 解题思路: 递推公式 题目意思非常无聊,感觉是YY的. 设$dp[i]$为取第i个环时的总cost. $dp[1]=1$,$dp[2]=2$,前两个环取下是没有条件要求的. 从i=3开始,由于条件对最后的环限制最大,所以从最后一…
Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 30    Accepted Submission(s): 20 Problem Description Farmer John likes to play mathematics games with his N cows. Recently, the…
link: http://acm.hdu.edu.cn/showproblem.php?pid=4686 构造出来的矩阵是这样的:根据题目的ai * bi = ……,可以发现 矩阵1 * 矩阵3 = 矩阵2.然后就是矩阵快速幂了. 1 1 ai bi ai*bi Si 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 ai+1 bi+1 ai+1*bi+1 Si+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 AY…