题目大意:给定 \(a,b,c\),求线性同余方程 \(ax+by=c\) 的最小正整数解. 题解:首先判断方程是否有解,若 c 不能整出 a 与 b 的最大公约数,则无解.若有解,则利用扩展欧几里得算法先求出 \(ax'+by'=gcd(a,b)\) 的一组解,再根据倍数进行缩放即可得到原不定方程的一组解.求最小正整数解可以根据公式 \((x\%mod+mod)\%mod\) 得出,原因如下:C++ 负数取模为截断机制,即:不会向下取整,直接进行截断.因此,若 x 为负数,则取模之后会变成绝对…