1. AutoEncoder介绍】的更多相关文章

1. AutoEncoder介绍 2. Applications of AutoEncoder in NLP 3. Recursive Autoencoder(递归自动编码器) 4. Stacked AutoEncoder(堆栈自动编码器) 1. 前言 AutoEncoder(后面用AE简称)是一个自动编码器,它是通过重建输入的神经网络训练过程,它的隐藏成层的向量具有降维的作用.它的特点是编码器会创建一个隐藏层(或多个隐藏层)包含了输入数据含义的低维向量.然后有一个解码器,会通过隐藏层的低维向量…
目前为止,我们已经讨论了神经网络在有监督学习中的应用.在有监督学习中,训练样本是有类别标签的.现在假设我们只有一个没有带类别标签的训练样本集合  ,其中  .自编码神经网络是一种无监督学习算法,它使用了反向传播算法,并让目标值等于输入值,比如  .下图是一个自编码神经网络的示例. 自编码神经网络尝试学习一个  的函数.换句话说,它尝试逼近一个恒等函数,从而使得输出  接近于输入  .恒等函数虽然看上去不太有学习的意义,但是当我们为自编码神经网络加入某些限制,比如限定隐藏神经元的数量,我们就可以从…
1. AutoEncoder介绍 2. Applications of AutoEncoder in NLP 3. Recursive Autoencoder(递归自动编码器) 4. Stacked AutoEncoder(堆栈自动编码器) 1. 前言 深度学习的威力在于其能够逐层地学习原始数据的多种表达方式.每一层都以前一层的表达特征为基础,抽取出更加抽象,更加适合复杂的特征,然后做一些分类等任务. 堆叠自编码器(Stacked Autoencoder,SAE)实际上就是做这样的事情,如前面的…
1. AutoEncoder介绍 2. Applications of AutoEncoder in NLP 3. Recursive Autoencoder(递归自动编码器) 4. Stacked AutoEncoder(堆栈自动编码器) 1. 前言 今天主要介绍用在NLP中比较常见的AutoEncoder的模型,Recursive Autoencoders(递归自动编码模型).这篇文章主要讨论RAE在序列化的数据中,如何把数据降维并且用向量表示. 2. 矩阵表示 假设我们有一个矩阵\(L\)…
1. AutoEncoder介绍 2. Applications of AutoEncoder in NLP 3. Recursive Autoencoder(递归自动编码器) 4. Stacked AutoEncoder(堆栈自动编码器) 1. 前言 深度学习是机器学习的一个分支,它设计大量的学习函数和概念模型.大多数机器学习需要大量的人工筛选的特征作为输入,通常特征筛选需要对数据的意义有深入的了解.并且一个能很好的适用于一组数据的特征可能并不使用于其他数据集.深度学习算法在不同层次上对数据进…
Contractive autoencoder是autoencoder的一个变种,其实就是在autoencoder上加入了一个规则项,它简称CAE(对应中文翻译为?).通常情况下,对权值进行惩罚后的autoencoder数学表达形式为: 这是直接对W的值进行惩罚的,而今天要讲的CAE其数学表达式同样非常简单,如下: 其中的 是隐含层输出值关于权重的雅克比矩阵,而   表示的是该雅克比矩阵的F范数的平方,即雅克比矩阵中每个元素求平方 然后求和,更具体的数学表达式为: 关于雅克比矩阵的介绍可参考雅克…
前言: 当采用无监督的方法分层预训练深度网络的权值时,为了学习到较鲁棒的特征,可以在网络的可视层(即数据的输入层)引入随机噪声,这种方法称为Denoise Autoencoder(简称dAE),由Bengio在08年提出,见其文章Extracting and composing robust features with denoising autoencoders.使用dAE时,可以用被破坏的输入数据重构出原始的数据(指没被破坏的数据),所以它训练出来的特征会更鲁棒.本篇博文主要是根据Benig…
主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:00:49 我今天讲PRML的第十二章,连续隐变量.既然有连续隐变量,一定也有离散隐变量,那么离散隐变量是什么?我们可能还记得之前尼采兄讲过的9.2节的高斯混合模型.它有一个K维二值隐变量z,不仅只能取0-1两个值,而且K维中只能有1维为1.其他维必须为0,表示我们观察到的x属于K类中的哪一类.显然,这里的隐变量z就是个离散隐变量.不过我们容易想到,隐变量未必像kmeans或GMM这种聚类算法那样,非此…
1前言 本人写技术博客的目的,其实是感觉好多东西,很长一段时间不动就会忘记了,为了加深学习记忆以及方便以后可能忘记后能很快回忆起自己曾经学过的东西. 首先,在网上找了一些资料,看见介绍说UFLDL很不错,很适合从基础开始学习,Adrew Ng大牛写得一点都不装B,感觉非常好,另外对我们英语不好的人来说非常感谢,此教程的那些翻译者们!如余凯等.因为我先看了一些深度学习的文章,但是感觉理解得不够,一般要自己编程或者至少要看懂别人的程序才能理解深刻,所以我根据该教程的练习,一步一步做起,当然我也参考了…
NiftyNet项目介绍  简述  NiftyNet是一款开源的卷积神经网络平台,旨在通过实现医学图像分析的深度学习方法和模块,支持快速原型和再现性,由WEISS (Wellcome EPSRC Centre for Interventional and Surgical Sciences), CMIC ( Centre for Medical Image Computing),HIG(High-dimensional Imaging Group)三家研究机构共同推出.  NiftyNet项目的…