Improved GAN】的更多相关文章

https://www.bilibili.com/video/av9770302/?p=16 从之前讲的basic gan延伸到unified framework,到WGAN 再到通过WGAN进行Generation和Transformation 复习一下GAN, 首先我们有一个目标,target分布,Pdata, 蓝色部分表示Pdata高,即从这部分取出的x都是符合预期的,比如这里的头像图片 GAN的目的就是训练一个generator nn,让它的输出尽量接近Pdata分布 generator…
0.背景 Tim Salimans等人认为之前的GANs虽然可以生成很好的样本,然而训练GAN本质是找到一个基于连续的,高维参数空间上的非凸游戏上的纳什平衡.然而不幸的是,寻找纳什平衡是一个十分困难的问题.在现有的针对特定场景算法中,GAN的实现通常是使用梯度下降的方法去训练GAN网络的目标函数,意在找到lost函数最低值而已,而不是真的找零和游戏中的纳什平衡.且目标函数本身是非凸函数,其中是连续参数且参数空间维度很高,所以如果真的去搜寻纳什平衡,那么这些算法都是无法收敛的. 当游戏中每个人都认…
Valse 2017 | 生成对抗网络(GAN)研究年度进展评述 https://www.leiphone.com/news/201704/fcG0rTSZWqgI31eY.html?viewType=weixin 雷锋网按:2017 年 4 月 21-23 日,VALSE(视觉与学习青年学者研讨会)在厦门举行,国内 CV 领域顶级专家学者齐聚一堂,参会的青年学者达 2000 多人.在 VALSE 的「年度进展评述」环节,共有 12 名学者依次上台,对 CV 研究和应用分支领域近年发展做了详细系…
本文转自:http://www.jianshu.com/p/2acb804dd811 GAN论文整理 作者 FinlayLiu 已关注 2016.11.09 13:21 字数 1551 阅读 1263评论 0喜欢 7 原始GAN Goodfellow和Bengio等人发表在NIPS 2014年的文章Generative adversary network,是生成对抗网络的开创文章,论文思想启发自博弈论中的二人零和博弈.在二人零和博弈中,两位博弈方的利益之和为零或一个常数,即一方有所得,另一方必有…
深入浅出 GAN·原理篇文字版(完整)|干货 from:http://baijiahao.baidu.com/s?id=1568663805038898&wfr=spider&for=pc 百家号17-05-2902:02 导语 这次的内容主要是想梳理 GAN 从 NIPS 2014 被提出,到 2017年5月,都有哪些重要的从原理和方法上的重要研究.一共覆盖了25篇重要论文(论文列表见本文最下方). 引言:GAN的惊艳应用 首先来看看 GAN 现在能做到哪些惊艳的事呢? GAN 可以被用…
0. Introduction 基于纳什平衡,零和游戏,最大最小策略等角度来作为GAN的引言 1. GAN GAN开山之作 图1.1 GAN的判别器和生成器的结构图及loss 2. Conditional GAN 图2.1 CGAN的目标函数 图2.2 CGAN的判别器和生成器的结构图及loss 图2.2来自这里,图2.3是来自论文内部,两者在原理结构上没任何差别. 图2.3 CGAN结构图 如图2.3所示,CGAN相比于GAN在于,其输入部分增加了额外的信息,且此额外信息是固定的,如图像类别或…
Libo1575899134@outlook.com Libo (原创文章,转发请注明作者) 本文章会先从Gan的简单应用示例讲起,从三个方面问题以及解决思路覆盖25篇GAN论文,第二个大部分会进一步讲Gan的所有领域应用 ----------------------------------------------------------------------------------- 1: 下图GAN可以学到不同的字体,并且在字体之间进行不同的变换 2 下图可以用简笔画可以用GAN帮助生成想…
Abstract 最近在两个领域上的图像翻译研究取得了显著的成果.但是在处理多于两个领域的问题上,现存的方法在尺度和鲁棒性上还是有所欠缺,因为需要为每个图像域对单独训练不同的模型.为了解决该问题,我们提出了StarGAN方法,这是一个新型的可扩展的方法,能够仅使用一个单一模型就实现多领域的图像翻译.StarGAN这样的统一模型的结构允许在单个网络上同时训练带有不同领域的多个数据集.这使得StarGAN的翻译图像质量优于现有的模型,并具有将输入图像灵活地翻译到任意目标域的新能力.通过实验,验证了该…
学习总结于国立台湾大学 :李宏毅老师 WGAN前作:Towards Principled Methods for Training Generative Adversarial Networks  WGAN:  Wasserstein GAN  Improved WGAN:  Improved Training of Wasserstein GANs  本文outline 一句话介绍WGAN: Using Earth Mover’s Distance to evaluate two distri…
How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While research in Generative Adversarial Networks (GANs) continues to improve the fundamental stability of these models, we use a bunch of tricks to train th…