Spark实时案例】的更多相关文章

1.概述 最近有同学问道,除了使用 Storm 充当实时计算的模型外,还有木有其他的方式来实现实时计算的业务.了解到,在使用 Storm 时,需要编写基于编程语言的代码.比如,要实现一个流水指标的统计,需要去编写相应的业务代码,能不能有一种简便的方式来实现这一需求.在解答了该同学的疑惑后,整理了该实现方案的一个案例,供后面的同学学习参考. 2.内容 实现该方案,整体的流程是不变的,我这里只是替换了其计算模型,将 Storm 替换为 Spark,原先的数据收集,存储依然可以保留. 2.1 Spar…
常见的七种Hadoop和Spark项目案例 有一句古老的格言是这样说的,如果你向某人提供你的全部支持和金融支持去做一些不同的和创新的事情,他们最终却会做别人正在做的事情.如比较火爆的Hadoop.Spark和Storm,每个人都认为他们正在做一些与这些新的大数据技术相关的事情,但它不需要很长的时间遇到相同的模式.具体的实施可能有所不同,但根据我的经验,它们是最常见的七种项目. 项目一:数据整合 称之为“企业级数据中心”或“数据湖”,这个想法是你有不同的数据源,你想对它们进行数据分析.这类项目包括…
本課主題 通过 Spark-shell 窥探程序运行时的状况 TaskScheduler 与 SchedulerBackend 之间的关系 FIFO 与 FAIR 两种调度模式彻底解密 Task 数据本地性资源分配源码实现 引言 TaskScheduler 是 Spark 整个调度的底层调度器,底层调度器是负责具体 Task 本身的运行的,所以豪无疑问的是一个至关重要的内容.希望这篇文章能为读者带出以下的启发: 了解 程序运行时具体创建的实例对象 了解 TaskScheduler 与 Sched…
[原创 Hadoop&Spark 动手实践 13]Spark综合案例:简易电影推荐系统…
1.概述 最近有同学问道,除了使用 Storm 充当实时计算的模型外,还有木有其他的方式来实现实时计算的业务.了解到,在使用 Storm 时,需要编写基于编程语言的代码.比如,要实现一个流水指标的统计,需要去编写相应的业务代码,能不能有一种简便的方式来实现这一需求.在解答了该同学的疑惑后,整理了该实现方案的一个案例,供后面的同学学习参考. 2.内容 实现该方案,整体的流程是不变的,我这里只是替换了其计算模型,将 Storm 替换为 Spark,原先的数据收集,存储依然可以保留. 2.1 Spar…
初识 Spark 大数据处理,目前还只是小白阶段,初步搭建起运行环境,慢慢学习之. 本文熟悉下 Spark 数据处理的几个经典案例. 首先将 Scala SDK 的源码导入 IDEA,方便查看和调试代码,具体参考:intellij idea查看scala sdk的源代码 WordCount WordCount 号称大数据界的 HelloWorld,初识大数据代码,从 WordCount 开始,其基本流程图如下: 相关代码如下: import org.apache.spark.SparkConf…
iplocation需求 在互联网中,我们经常会见到城市热点图这样的报表数据,例如在百度统计中,会统计今年的热门旅游城市.热门报考学校等,会将这样的信息显示在热点图中. 因此,我们需要通过日志信息(运行商或者网站自己生成)和城市ip段信息来判断用户的ip段,统计热点经纬度. 练习数据 链接:https://pan.baidu.com/s/14IA1pzUWEnDK_VCH_LYRLw 提取码:pnwv package org.apache.spark import org.apache.spar…
package spark_example01; import java.io.File; import java.io.FileWriter; import java.io.IOException; import java.util.Random; /** */ public class PeopleInfoFileGenerator { public static void main(String[] args){ File file = new File("/Users/xls/Deskt…
一.Join原则 将条目少的表/子查询放在Join的左边.原因:在Join的reduce阶段,位于Join左边的表的内容会被加载进内存,条目少的表放在左边,可以减少发生内存溢出的几率. 小表关联大表:用MapJoin把小表全部加载到内存在map端Join,避免reducer处理.如: select /*+ MapJoin(user)*/ l.session_id,u.username from user u join page_views l on u.id = l.user_id 二.控制ma…
1.  计算提供两种模式,一种是jar包本地计算.一种是JSF服务. 2.  第一步是引入spark,因与netty.JDQ均有冲突,解决netty冲突后,隔离计算为单独服务.已在线上,因storm也与spark存 在运行时冲突,storm也在用服务. 3.  第二步是召回集扩量,发现当召回集由200扩到500后性能下降过快到70ms,利用多线程多核计算,性能到6ms.已在线上 4.  第三步在此扩量到1000,采用增加线程方式,性能达到25ms左右.已在预发 5.  第四步召回集在扩量,如性能…