Spark的优势】的更多相关文章

首先了解一下Mapreduce 它最本质的两个过程就是Map和Reduce,Map的应用在于我们需要数据一对一的元素的映射转换,比如说进行截取,进行过滤,或者任何的转换操作,这些一对一的元素转换就称作是Map:Reduce主要就是元素的聚合,就是多个元素对一个元素的聚合,比如求Sum等,这就是Reduce.Mapreduce是Hadoop1.0的核心,Spark出现慢慢替代Mapreduce.那么为什么Mapreduce还在被使用呢?因为有很多现有的应用还依赖于它,它不是一个独立的存在,已经成为…
Spark简介 视频教程: 1.优酷 2.YouTube 简介: Spark是加州大学伯克利分校AMP实验室,开发的通用内存并行计算框架.Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目Spark以其先进的设计理念,迅速成为社区的热门项目,围绕着Spark推出了Spark SQL.Spark Streaming.MLLib和GraphX等组件,也就是BDAS(伯克利数据分析栈),这些组件逐渐形成大数据处理一站式解决平台. Spark使用Scala语言实现,…
写这个系列是因为最近公司在搞技术分享,学习Spark,我的任务是讲PySpark的应用,因为我主要用Python,结合Spark,就讲PySpark了.然而我在学习的过程中发现,PySpark很鸡肋(至少现在我觉得我不会拿PySpark做开发).为什么呢?原因如下: 1.PySpark支持的算法太少了.我们看一下PySpark支持的算法:(参考官方文档) 前面两个pyspark.sql和pyspark.streaming是对sql和streaming的支持.主要是读取数据,和streaming处…
最近老大让用Spark做一个ETL项目,搭建了一套只有三个结点Standalone模式的Spark集群做测试,基础数据量大概8000W左右.看了官方文档,Spark确实在Map-Reduce上提升了很多,可是官方明确提出了在Interactive Data 方面性能提升最大.但是做ETL的数据之间是平行结构,没有任何交互,数据处理完直接就推送走了,也不用做任何缓存,因此完全体现不出来Spark的优势.具体可以用下面这个例子来说, 假设Hadoop集群中有一个文件,每行有一个随机数,我们现在需要计…
摘要: spark的优势:(1)图计算,迭代计算(2)交互式查询计算 spark特点:(1)分布式并行计算框架(2)内存计算,不仅数据加载到内存,中间结果也存储内存 为了满足挖掘分析与交互式实时查询的计算需求,腾讯大数据使用了Spark平台来支持挖掘分析类计算.交互式实时查询计算以及允许误差范围的快速查询计算,目前腾讯大数据拥有超过200台的Spark集群,并独立维护Spark和Shark分支.Spark集群已稳定运行2年,我们积累了大量的案例和运营经验能力,另外多个业务的大数据查询与分析应用,…
Spark简介 [TOC] Spark是什么 Spark是基于内存计算的大数据并行计算框架 Spark是MapReduce的替代方案 Spark与Hadoop Spark是一个计算框架,而Hadoop中包含计算框架MapReduce和分布式文件系统HDFS,Hadoop更广泛地说还包括在其生态系统上的其他系统. Spark的优势 中间结果输出 基于MapReduce的计算引擎通常会将中间结果输出到磁盘上,进行储存和容错.当一些查询翻译到MapReduce任务是,往往会产生多个Stage,而这些串…
Spark相关知识点 1.Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架 dfsSpark基于mapreduce算法实现的分布式计算,拥有HadoopMapReduce所具有的优点:但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法. 2.Spark与Hadoop的对比(Spar…
作为一名程序员通病就是不安分,对业界的技术总要折腾一番,哪怕在最终实际工作中应用到的就那么一点.最近自己准备入门Storm学习,关于流式大数据框架目前比较流行的有Spark和Storm等,在入门之前,先对两种框架做个基本的对比,便于后期学习中更加深入的理解各自的应用场景以及优劣.关于Storm和Spark的对比主要从网络和书本搜索得到,基本比较如下: 对比方面 Storm Spark Streaming 是否实时模型 纯实时 准实时 实时计算延时度 毫秒级 秒级 吞吐量 低 高 事务机制 支持且…
要想搞清楚spark跟Hadoop到底谁更厉害,首先得明白spark到底是什么鬼. 经过之前的介绍大家应该非常了解什么是Hadoop了(不了解的点击这里:白话大数据 | hadoop究竟是什么鬼),简单的说:Hadoop是由HDFS分布式文件系统和MapReduce编程模型等部分组成的分布式系统架构. 而Spark呢,更像是Hadoop MapReduce这样的编程模型. 其实要讲清楚Spark,内存和磁盘这两个概念是必须要弄清楚的,相信在座的老爷太太们都懂,我还是简单说一下吧.内存和磁盘两者都…
1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架. dfsSpark基于mapreduce算法实现的分布式计算,拥有HadoopMapReduce所具有的优点;但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法. 2.Spark与Hadoop的对比(Spark的优势) 1.Spark的中间数据放到内存…