[LintCode]快速幂(数论)】的更多相关文章

计算a^n % b,其中a,b和n都是32位的整数. 快速幂搞就过了.快速幂首先就是要知道 (a*b)%c = ((a%c)*b)%c ,所以经过推导得出. (a^n)%b = ((((a%b)*a)%b)*a)..........%b)*a) %b    (n次) 这样只能解决的a^n 超出计算机计数范围,复杂度还是没有降下来呢. 怎么办呢^O^,bit-manipulation!!!!!! 具体详解自行百度好了^_^(利用了二分的思想) Code: class Solution { /* *…
题意: F(1)=A,F(2)=B,F(n)=C*F(n-2)+D*F(n-1)+P/n 给定ABCDPn,求F(n) mod 1e9+7 思路: P/n在一段n里是不变的,可以数论分块,再在每一段里用矩阵快速幂 debug了一下午.. 坑点: 1.数论分块的写法要注意,已更新 2.矩阵乘法在赋值回去的时候记得模一下 3.矩阵相乘不可逆,注意看一下 代码: #include<iostream> #include<cstdio> #include<algorithm> #…
原文链接http://www.cnblogs.com/zhouzhendong/p/8109156.html 题目传送门 - BZOJ1951 题意概括 求 GM mod 999911659 M=∑i|nC(n,i) N,G<=109 题解 我们发现999911659是一个素数,设为p. 费马小定理:对于任意正整数a,和素数p,有 ap-1 Ξ 1 (mod p) 由此可得, GM Ξ GM mod (p-1) (mod p) 这个可以用快速幂搞定,现在的问题就是如何计算M 我们研究p-1这个数…
[CQOI2018]交错序列 \(solution:\) 这一题出得真的很好,将原本一道矩阵快速幂硬生生加入组合数的标签,还那么没有违和感,那么让人看不出来.所以做这道题必须先知道(矩阵快速幂及如何构建递推矩阵)(组合数及二项式定理). 不知道大家有没有做过洛谷的帕秋莉手环及P哥的桶,这道题中不能有相邻的两个1就是我们在构造这个交错序列时不能连续加入两个1,这个如果直接让我们求方案数(不靠虑一的个数)就是矩阵快速幂的板子了(可以自己推递推方程).但是这1题偏偏把1的个数搭上了,我们发现1的个数是…
接上一篇,那个递推式显然可以用矩阵快速幂优化...自己随便YY了下就出来了,学了一下怎么用LaTeX画公式,LaTeX真是个好东西!嘿嘿嘿 如上图.(刚画错了一发...已更新 然后就可以过V2了 orz CZL卡常大师,我怎么越卡越慢啊QAQ #include<iostream> #include<cstdlib> #include<cstring> #include<cstdio> #include<cmath> #define ll long…
原文链接http://www.cnblogs.com/zhouzhendong/p/8110015.html 题目传送门 - BZOJ2142 题意概括 小E购买了n件礼物,送给m个人,送给第i个人礼物数量为wi.计算出送礼物的方案数模P后的结果. 设P=p1^c1 * p2^c2 * p3^c3 * … *pt ^ ct,pi为质数. 对于100%的数据,1≤n≤10^9,1≤m≤5,1≤pi^ci≤10^5. 题解 首先,我们可以列出答案: ans=∑1<=i<=n C(n,n-∑1<…
[BZOJ4002][JLOI2015]有意义的字符串(数论,矩阵快速幂) 题面 BZOJ 洛谷 题解 发现我这种题总是做不动... 令\(A=\frac{b+\sqrt d}{2},B=\frac{b-\sqrt d}{2}\). 发现\(A+B=b,AB=\frac{b^2-d}{4}\). 要求的东西是\(A^n\),我们变成\(A^n+B^n-B^n\). 分开考虑,发现\(A^n+B^n=(A^{n-1}+B^{n-1})(A+B)-(A^{n-2}+B^{n-2})AB\),这样子前…
原文链接http://www.cnblogs.com/zhouzhendong/p/8116330.html UPD(2018-03-26):回来重新学数论啦.之前的博客版面放在更新之后的后面. 题目传送门 - BZOJ3561 题意概括 给出$n,m$,求$\Large\sum_{i=1}^n\sum_{j=1}^m lcm(i,j)^{\gcd(i, j)}$. $1\leq n,m\leq 500000$ 题解 先推式子:(假设$n\leq m$) $$\sum_{i=1}^n\sum_{…
[BZOJ2432][NOI2011]兔农(数论,矩阵快速幂) 题面 BZOJ 题解 这题\(75\)分就是送的,我什么都不想写. 先手玩一下,发现每次每次出现\(mod\ K=1\)的数之后 把它减一,就变成了\(0\).接着后面的数显然还是一个斐波那契数列 只是都乘了\(0\)之前的那个数作为倍数而已. 拿样例举个例子?以下数字都在模\(7\)意义下进行 1 1 2 3 5 0(1) 5 5 3 0(1) 3 3 6 2 0(1) 大概就是这样子. 当然,如果我们继续手玩下去,也许可以发现点…
ACM数论——快速幂 快速幂定义: 顾名思义,快速幂就是快速算底数的n次幂.其时间复杂度为 O(log₂N), 与朴素的O(N)相比效率有了极大的提高. 原理: 以下以求a的b次方来介绍: 把b转换成二进制数.该二进制数第i位的权为  例如 11的二进制是1011 11 = 2³×1 + 2²×0 + 2¹×1 + 2º×1 因此,我们将a¹¹转化为算   快速幂位运算: LL pow_mod(LL a, LL b, LL p){//a的b次方取余p LL ret = ; while(b){ )…