R语言数据分析利器data.table包-数据框结构处理精讲 R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理快,内部处理的步骤进行了程序上的优化,使用多线程,甚至很多函数是使用C写的,大大加快数据运行速度.因此,在对大数据处理上,使用data.table无疑具有极高的效率.这里我们主要讲的是它对数据框结构的快捷处理. 和data.frame的高度兼容…
数据框(data.frame)用于存储二维表(即关系表)的数据,每一列存储的数据类型必须相同,不同的数据列的数据类型可以相同,也可以不同,但是,每列的长度必须相同.数据框的每列可以有唯一的命名,在已创建的数据框上,用户可以添加计算列,这样,R根据同一行的数据列值得出相应的数据列的值.数据框是数据分析中最重要的数据对象,必须熟练掌握数据框的操作. 一,创建数据框 R提供三种方式,用于创建数据框,第一种是通过读取文件创建,常用的是用于读取文件的函数是read.table,而read.csv是read…
数据框(data.frame)是最常用的数据结构,用于存储二维表(即关系表)的数据,每一列存储的数据类型必须相同,不同数据列的数据类型可以相同,也可以不同,但是每列的行数(长度)必须相同.数据框的每列都有唯一的名字,在已创建的数据框上,用户可以添加计算列,这样,R引擎根据同一行的数据列,计算出表达式的值,并把该值作为计算列的值.数据框是数据分析中最重要的数据对象,必须熟练掌握数据框的操作. 一,创建数据框 创建数据框,常用的方式是:读取文件.读取关系表和使用函数创建,用户应根据实际的需要,选择合…
    R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理快,内部处理的步骤进行了程序上的优化,使用多线程,甚至很多函数是使用C写的,大大加快数据运行速度.因此,在对大数据处理上,使用data.table无疑具有极高的效率.这里我们主要讲的是它对数据框结构的快捷处理. 和data.frame的高度兼容 DT = data.table(x=rep(c("b&…
读取csv格式数据 数据来源是西南财经大学 司亚卿 老师的课程作业 方法一:read.csv()函数 file.choose() read.csv("C:\\Users\\Administrator\\Desktop\\Astocks.csv", head=T,sep=,stringsAsFactors = FALSE) 结果…
注释:R语言是区分大小写的 1.向量 R语言中可以将各种向量赋值为一个变量,这种赋值操作符就是等号“=”,也可以使用“<-”. 1)产生向量 (1)函数c() 例如:x1=c(2,4,6,8,0)    表示数列 (2)例如: 向量a:2到60的元素都乘以2再加1 a[5]:显示向量a的第5个元素 a[-5]:除去向量a的第5个元素,显示其它元素 a[1:5]:显示第1到第5个元素 a[-(1:5)]:除去第1到第5个元素,显示其余的元素 a[c(2,4,7)]:显示第2,第4,第7个元素 a[…
[R笔记]R语言函数总结   R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(…
R语言笔记 学习R语言对我来说有好几个地方需要注意的,我觉得这样的经验也适用于学习其他的新的语言. 语言的目标 我理解语言的目标就是这个语言是用来做什么的,为什么样的任务服务的,也就是设计这个语言的动机.比如C++是为系统编程服务的,java是为企业级应用服务的.R语言是用于统计分析,这样在R的系统中有大量的库(或者是package)用来实现特定的统计方法. 基本的数据类型 学习各个语言的第一步是了解这个语言的最基本的数据类型,这决定如何使用变量进行计算. 基本数据类型是直接由语言本身所定义的变…
接R语言笔记3--实例1 R语言中的可视化函数分为两大类,探索性可视化(陌生数据集,不了解,需要探索里面的信息:偏重于快速,方便的工具)和解释性可视化(完全了解数据集,里面的故事需要讲解别人:偏重全面,美观的工具). R语言中的绘图包: graphics(自带) >探索性 lattice >探索性 ggplot2 >解释性 1.对x1进行直方图分析,绘制直方图hist()       2.探索各科成绩的关联关系,散点图绘制函数plot()            3.列联表分析,列联函数t…
利用R语言制作出漂亮的交互数据可视化 利用R语言也可以制作出漂亮的交互数据可视化,下面和大家分享一些常用的交互可视化的R包. rCharts包 说起R语言的交互包,第一个想到的应该就是rCharts包.该包直接在R中生成基于D3的Web界面. rCharts包的安装: require(devtools) install_github('rCharts', 'ramnathv') rCharts函数就像lattice函数一样,通过formula.data指定数据源和绘图方式,并通过type指定图表…