Concepts and Tricks In CNN】的更多相关文章

转自:http://blog.cvmarcher.com/posts/2015/05/17/cnn-trick/ 这篇文章主要讲一下Convolutional Neural Network(CNN)里面的一些概念以及技巧. Receptive Field (感受野) 这是一个非常重要的概念,receptive field往往是描述两个feature maps A/B上神经元的关系,假设从A经过若干个操作得到B,这时候B上的一个区域areabareab只会跟a上的一个区域相关areaaareaa,…
转载地址:https://zhuanlan.zhihu.com/p/24833574 一.前言 CNN作为一个著名的深度学习领域的“黑盒”模型,已经在计算机视觉的诸多领域取得了极大的成功,但是,至今没有人能够“打开”这个“黑盒”,从数学原理上予以解释.这对理论研究者,尤其是数学家来说当然是不可接受的,但换一个角度来说,我们终于创造出了无法完全解释的事物,这也未尝不是一种进步了! 当然,虽然无法完全“打开”这个“黑盒”,但是仍然出现了很多探索这个“黑盒”的尝试工作.其中一个工作就是今天我们讨论的重…
原文地址:https://zhuanlan.zhihu.com/p/24833574 一.前言 CNN作为一个著名的深度学习领域的“黑盒”模型,已经在计算机视觉的诸多领域取得了极大的成功,但是,至今没有人能够“打开”这个“黑盒”,从数学原理上予以解释.这对理论研究者,尤其是数学家来说当然是不可接受的,但换一个角度来说,我们终于创造出了无法完全解释的事物,这也未尝不是一种进步了! 当然,虽然无法完全“打开”这个“黑盒”,但是仍然出现了很多探索这个“黑盒”的尝试工作.其中一个工作就是今天我们讨论的重…
[it-ebooks]电子书列表   [2014]: Learning Objective-C by Developing iPhone Games || Leverage Xcode and Objective-C to develop iPhone games http://it-ebooks.info/book/3544/Learning Web App Development || Build Quickly with Proven JavaScript Techniques http:…
Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei) http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html…
Deep Learning in a Nutshell: Core Concepts This post is the first in a series I’ll be writing for Parallel Forall that aims to provide an intuitive and gentle introduction todeep learning. It covers the most important deep learning concepts and aims…
Deep Learning in a Nutshell: Core Concepts Share:   Posted on November 3, 2015by Tim Dettmers 7 CommentsTagged cuDNN, Deep Learning, Deep Neural Networks, Machine Learning,Neural Networks   This post is the first in a series I’ll be writing for Paral…
A Discriminative CNN Video Representation for Event Detection Note here: it's a learning note on the topic of video representation, based on the paper below. Link: http://arxiv.org/pdf/1411.4006v1.pdf Motivation: The use of improved Dense Trajectorie…
斯坦福课程CS224d: Deep Learning for Natural Language Processing lecture13:Convolutional neural networks -- for sentence classification 主要是学习笔记,卷积神经网络(CNN),因为其特殊的结构,在图像处理和语音识别方面都有很出色的表现.这里主要整理CNN在自然语言处理的应用和现状. 一.RNNs to CNNs 学过前面lecture的朋友,应该比较清楚.RNNs一般只能获…
神经网络训练中的Tricks之高效BP(反向传播算法) 神经网络训练中的Tricks之高效BP(反向传播算法) zouxy09@qq.com http://blog.csdn.net/zouxy09 Tricks!这是一个让人听了充满神秘和好奇的词.对于我们这些所谓的尝试应用机器学习技术解决某些问题的人,更是如此.曾记得,我们绞尽脑汁,搓手顿足,大喊“为什么我跑的模型不work?”,“为什么我实现的效果那么差?”,“为什么我复现的结果没有他论文里面说的那么好?”.有人会和你说“你不懂调参!里面有…
[深度学习系列3] Mariana CNN并行框架与图像识别 本文是腾讯深度学习系列文章的第三篇,聚焦于腾讯深度学习平台Mariana中深度卷积神经网络Deep CNNs的多GPU模型并行和数据并行框架. 将深度卷积神经网络(Convolutional Neural Networks, 简称CNNs)用于图像识别在研究领域吸引着越来越多目光.由于卷积神经网络结构非常适合模型并行的训练,因此以模型并行+数据并行的方式来加速Deep CNNs训练,可预期取得较大收获.Deep CNNs的单机多GPU…
Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)   Deep Neural Networks, especially Convolutional Neural Networks (CNN), allows computational models that are composed of multiple processing layers to learn representations of data with…
Github上的一个开源项目,文档讲得极清晰 Github - https://github.com/dennybritz/cnn-text-classification-tf 原文- http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/ In this post we will implement a model similar to Kim Yoon’s Convolut…
http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html Deep Neural Networks, especially Convolutional Neural Networks (CNN), allows computational models that are composed of multiple processing layers to learn representations of data with mul…
< Neural Networks Tricks of the Trade.2nd>这本书是收录了1998-2012年在NN上面的一些技巧.原理.算法性文章,对于初学者或者是正在学习NN的来说是很受用的.全书一共有30篇论文,本书期望里面的文章随着时间能成为经典,不过正如bengio(超级大神)说的“the wisdom distilled here should be taken as a guideline, to be tried and challenged, not as a pra…
https://zhuanlan.zhihu.com/p/25928551 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类领域特别是应用深度学习解决文本分类的相关的思路.做法和部分实践的经验. 业务问题描述: 淘宝商品的一个典型的例子见下图,图中商品的标题是“夏装雪纺条纹短袖t恤女春半袖衣服夏天中长款大码胖mm显瘦上衣夏”.淘宝网后台是通过树形的多层的类目体系管理商品的,覆盖叶子类目数量达上万个,商品量也是10亿量级,…
Basic concepts of speech Speech is a complex phenomenon. People rarely understand how is it produced and perceived. The naive perception is often that speech is built with words, and each word consists of phones. The reality is unfortunately very dif…
Productivity tips, tricks and hacks for academics (2015 edition) Contents Jump to: My philosophy: Optimize transaction costs. Don't work from home. Eliminate temptation to waste time. Salvage dead time with technology. Get rid of your TV. Taming emai…
转自知乎上看到的一篇很棒的文章:用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类领域特别是应用深度学习解决文本分类的相关的思路.做法和部分实践的经验. 业务问题描述: 淘宝商品的一个典型的例子见下图,图中商品的标题是“夏装雪纺条纹短袖t恤女春半袖衣服夏天中长款大码胖mm显瘦上衣夏”.淘宝网后台是通过树形的多层的类目体系管理商品的,覆盖…
Link of the Paper: https://arxiv.org/abs/1805.09019 Innovations: The authors propose a CNN + CNN framework for image captioning. There are four modules in the framework: vision module ( VGG-16 ), which is adopted to "watch" images; language modu…
fasttext: '''This example demonstrates the use of fasttext for text classification Based on Joulin et al's paper: Bags of Tricks for Efficient Text Classification https://arxiv.org/abs/1607.01759 Results on IMDB datasets with uni and bi-gram embeddin…
一.概述 这个是最近的核心工作了,基本上都是靠着这篇paper的model过日子了啊.. 论文主要讲的是hand gesture recognition,实际上是用googlenet做的一个classification的工作,他的工作也就是在googlenet上做了fine-tuning,那么论文的关键是什么呢...当然就是标题啦..关键工作是CNN+EM,通过EM算法对隐变量参数进行预测,用CNN代替stepE的高斯模型的预测,这样迭代下来,最终训练了在这个值标记了3000张但是有1 Mill…
这篇文章来自李沐大神团队,使用各种CNN tricks,将原始的resnet在imagenet上提升了四个点.记录一下,可以用到自己的网络上.如果图片显示不了,点击链接观看 baseline model: resnet50 transform部分使用pytorch的torchvision接口 train transform: transforms.RandomResizedCrop(224) transforms.RandomHorizontalFlip(0.5) transforms.Colo…
add by zhj: 文章写的很好,适合初学者 原文:https://www.netguru.com/codestories/nginx-tutorial-basics-concepts Introduction Hello! Sharing is caring, so we'd love to share another piece of knowledge with you. We prepared a three-part nginx tutorial. If you already k…
论文阅读:<Bag of Tricks for Efficient Text Classification> 2018-04-25 11:22:29 卓寿杰_SoulJoy 阅读数 954更多 分类专栏: 深度学习 自然语言处理   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u011239443/article/details/80076720 https://blog.csdn.…
转载:调参是个头疼的事情,Yann LeCun.Yoshua Bengio和Geoffrey Hinton这些大牛为什么能够跳出各种牛逼的网络? 下面一些推荐的书和文章:调参资料总结Neural Network: Trick of the Trade Neural Networks: Tricks of the Trade Practical Recommendations for Gradient-based Training of Deep Architectures http://arxi…
先来看一下这是什么任务.就是给你手写数组的图片,然后识别这是什么数字: dataset 首先先来看PyTorch的dataset类: 我已经在从零学习pytorch 第2课 Dataset类讲解了什么是dataset类以及他的运行原理 class MNIST_data(Dataset): """MNIST dtaa set""" def __init__(self, file_path, transform = transforms.Compos…
导言: 在CV很多方向所谓改进模型,改进网络,都是在按照人的主观思想在改进,常常在说CNN的本质是提取特征,但并不知道它提取了什么特征,哪些区域对于识别真正起作用,也不知道网络是根据什么得出了分类结果. 如在上次解读的一篇论文<Feature Pyramid Transformer>(简称FPT)中,作者提出背景信息对于识别目标有重要作用,因为电脑肯定是在桌上,而不是水里,大街上,背景中的键盘鼠标的存在也能辅助区分电脑与电视机,因此作者提出要使用特征金字塔融合背景信息.从人的主观判断来看,这点…
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同,但形式上还是有些区别的,很显然在完成CNN反向传播前了解bp算法是必须的.本文的实验部分是参考斯坦福UFLDL新教程UFLDL:Exercise: Convolutional Ne…
由于公司需要进行了中文验证码的图片识别开发,最近一段时间刚忙完上线,好不容易闲下来就继上篇<基于Windows10 x64+visual Studio2013+Python2.7.12环境下的Caffe配置学习 >文章,记录下利用caffe进行中文验证码图片识别的开发过程.由于这里主要介绍开发和实现过程,CNN理论性的东西这里不作为介绍的重点,遇到相关的概念和术语请自行研究.目前从我们训练出来的模型来看,单字识别率接近96%,所以一个四字验证码的准确率大概80%,效果还不错,完全能满足使用,如…